The Importance of Extended-Spectrum β-lactamases in Gram-Negative Enteric Bacilli and the Phenotypic Methods of detection


1 Assistant Professor, Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

2 Professor, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

3 Associate Professor, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

4 Assistant Professor, Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

5 Assistant Professor, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

6 Professor, Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran


The production of β-lactamase enzymes is the main mechanism of resistance to β-lactam antibiotics in gramnegative bacilli. Therefore, it is important to identify the β-lactamases-producing bacteria for the treatment of caused infections. This article aimed to review the recent literature and guidelines regarding phenotypic detection of β-lactamases in common gram-negative bacilli in clinical samples.


  1. Kohanski MA, Dwyer DJ, Collin JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 2010; 8(6): 423-35.
  2. Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol 2010; 300(6): 371-9.
  3. Saga T, Yamaguchi K. History of antimicrobial agents and resistant bacteria. JMAJ 2009; 52(2): 103-8.
  4. Jacoby G, Munoz-Price LS. The new ß-lactamases. N Engl J Med 2005; 352(380): 91.
  5. Bush K, Jacoby GA. Updated functional classification of ß-lactamases. Antimicrob Agents Chemother 2010; 54(3): 969-76.
  6. Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol 2009; 58(Pt 9): 1133-48.
  7. Perez F, Endimiani A, Hujer KM, Bonomo RA. The continuing challenge of ESBLs. Curr Opin Pharmacol 2007; 7(5): 459-69.
  8. Weldhagen GF, Poirel L, Nordmann P. Ambler class A extended-spectrum beta-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob Agents Chemother 2003; 47(8): 2385-92.
  9. Poole K. Resistance to ß-lactam antibiotics. Cell Mol Life Sci 2004; 61(17): 2200-23.
  10. Samaha-Kfoury JN, Araj GF. Recent developments in beta-lactamases and extended spectrum beta-lactamases. BMJ 2003; 327(7425): 1209-13.
  11. Bush K. Characterization of ß-lactamases. Antimicrob Agents Chemother 1989; 33(3): 259-63.
  12. Paterson DL, Bonomo RA. Extended-spectrum ß-lactamases: a clinical update. Clin Microbiol Rev 2005; 18(4): 657-86.
  13. Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995; 8(4): 557-84.
  14. Weldhagen GF. GES: an emerging family of extended spectrum ß-lactamases. Clinical Microbiology Newsletter 2006; 28(19): 145-9.
  15. Sundin D. Hidden ß-lactamases in the enterobacteriaceae – dropping the extra disks for detection, part II. Clinical Microbiology Newsletter 2009; 31(7): 47-52.
  16. Denton M. Enterobacteriaceae. Int J Antimicrob Agents 2007; 29(Suppl 3): S9-S22.
  17. Kalantar D, Mansouri S. Emergence of multiple ß-lactamases produced by Escherichia coli clinical isolates from hospitalized patient in Kerman, Iran. Jundishapur J Microbiol 2010; 3(4): 137-45.
  18. British Society for Antimicrobial Chemotherapy. Detection of extended-spectrum b-lactamases (ESBLs) in E. coli and Klebsiella species [Online]. [Cited 2012]; Available from: URL: 2012/ 02/Ecoli klebsiella.
  19. Walther-Rasmussen J, Hoiby N. Cefotaximases (CTX-M-ases), an expanding family of extended-spectrum β-lactamases. Can J Microbiol 2004; 50(3): 137-65.
  20. Patel JB, Rasheed JK, Kitchel B. Carbapenemases in enterobacteriaceae: activity, epidemiology, and laboratory detection. Clinical Microbiology Newsletter 2009; 31(8): 55-62.
  21. Poirel L, Nordmann P, Lagrutta E. Emergence of KPC-Producing Pseudomonas aeruginosa in the United States. Antimicrob Agents Chemother 2010; 54(7): 3027.
  22. Kitchel B, Rasheed JK, Endimiani A, Hujer AM, Anderson KF, Bonomo RA, et al. Genetic factors associated with elevated carbapenem resistance in KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2010; 54(10): 4201-7.
  23. Walsh TR. Emerging carbapenemases: a global perspective. Int J Antimicrob Agents 2010; 36(Suppl 3): S8-14.
  24. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2: 65.
  25. Falagas ME, Karageorgopoulos DE. Extended-spectrum beta-lactamase-producing organisms. J Hosp Infect 2009; 73(4): 345-54.
  26. Shlaes DM. New beta-lactam-beta-lactamase inhibitor combinations in clinical development. Ann N Y Acad Sci 2013; 1277: 105-14.
  27. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Wayne, PA: Clinical and Laboratory Standards Institute; 2014.
  28. Mansouri S, Kalantar D, Asadollahi P, Taherikalani M, Emaneini M. Characterization of Klebsiella pneumoniae strains producing extended spectrum beta-lactamases and AMPC type beta-lactamases isolated from hospitalized patients in Kerman, Iran. Roum Arch Microbiol Immunol 2012; 71(2): 81-6.
  29. Mirsalehian A, Kalantar-Neyestanaki D, Nourijelyani K, Asadollahi K, Taherikalani M, Emaneini M, et al. Detection of AmpC-beta-lactamases producing isolates among carbapenem resistant P. aeruginosa isolated from burn patient. Iran J Microbiol 2014; 6(5): 306-10.
  30. Doi Y, Paterson DL. Detection of plasmid-mediated class C beta-lactamases. Int J Infect Dis 2007; 11(3): 191-7.
  31. Willems E, Verhaegen J, Magerman K, Nys S, Cartuyvels R. Towards a phenotypic screening strategy for emerging beta-lactamases in Gram-negative bacilli. Int J Antimicrob Agents 2013; 41(2): 99-109.
  32. Shahid M, Sobia F, Singh A, Khan HM, Hawkey PM, Huq A. AmpC β-lactamases and bacterial resistance: an updated mini review. Reviews in Medical Microbiology 2009; 20(3): 41-55.
  33. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22(4): 582-610.
  34. Rodriguez-Martinez JM, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 53(11): 4783-8.
  35. Hanson ND. AmpC beta-lactamases: what do we need to know for the future? J Antimicrob Chemother 2003; 52(1): 2-4.
  36. Li J, Cheng J, Yin J, Zhang X, Gao F, Zhu Y, et al. Progress on AmpC ß-lactamases. Current Bioinformatics 2009; 4(3): 218-25.
  37. Papanicolaou GA, Medeiros AA, Jacoby GA. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 1990; 34(11): 2200-9.
  38. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 1983; 11(6): 315-7.
  39. Bauernfeind A, Chong Y, Schweighart S. Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 1989; 17(5): 316-21.
  40. Jacoby GA. AmpC ß-lactamases. Clin Microbiol Rev 2009; 22(1): 161-82.
  41. Mansouri S, Neyestanaki DK, Shokoohi M, Halimi S, Beigverdi R, Rezagholezadeh F, et al. Characterization of AmpC, CTX-M and MBLs types of ß-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli producing Extended Spectrum ß-lactamases in Kerman, Iran. Jundishapur J Microbiol 2014; 7(2): e8756.
  42. Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC beta-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol 2005; 43(8): 4163-7.
  43. Black JA, Moland ES, Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal AmpC beta-lactamases. J Clin Microbiol 2005; 43(7): 3110-3.
  44. Song W, Bae IK, Lee YN, Lee CH, Lee SH, Jeong SH. Detection of extended-spectrum ß-lactamases by using boronic acid as an AmpC ß-lactamase inhibitor in clinical isolates of Klebsiella spp. and Escherichia coli. J Clin Microbiol 2007; 45(4): 1180-4.
  45. Tsakris A, Kristo I, Poulou A, Themeli-Digalaki K, Ikonomidis A, Petropoulou D, et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol 2009; 47(2): 362-7.
  46. Peter-Getzlaff S, Polsfuss S, Poledica M, Hombach M, Giger J, Bottger EC, et al. Detection of AmpC beta-lactamase in Escherichia coli: comparison of three phenotypic confirmation assays and genetic analysis. J Clin Microbiol 2011; 49(8): 2924-32.
  47. Kalantar D, Mansouri S, Razavi M. Emergence of imipenem resistance and presence of metallo-ß-lactamases enzymes in multi- drug resistant gram negative bacilli isolated from clinical samples in Kerman, 2007-2008. J Kerman Univ Med Sci 2010; 17(3): 208-14. [In Persian].
  48. Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpC-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns 2014; 40(8): 1556-61.
  49. Gupta V. Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species. Expert Opin Investig Drugs 2008; 17(2): 131-43.
  50. Tada T, Miyoshi-Akiyama T, Shimada K, Shimojima M, Kirikae T. IMP-43 and IMP-44 metallo-beta-lactamases with increased carbapenemase activities in multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57(9): 4427-32.
  51. Iraz M, Duzgun AO, Cicek AC, Bonnin RA, Ceylan A, Saral A, et al. Characterization of novel VIM carbapenemase, VIM-38, and first detection of GES-5 carbapenem-hydrolyzing beta-lactamases in Pseudomonas aeruginosa in Turkey. Diagn Microbiol Infect Dis 2014; 78(3): 292-4.
  52. Kalantar D, Jabalameli F, Emaneini M. The modified Hodge test for identification of Klebsiella pneumoniae carbapenemase producing isolates. Burns 2013; 39(2): 370-1.
  53. Pasteran F, Mendez T, Rapoport M, Guerriero L, Corso A. Controlling false-positive results obtained with the hodge and masuda assays for detection of class a carbapenemase in species of enterobacteriaceae by incorporating boronic Acid. J Clin Microbiol 2010; 48(4): 1323-32.
  54. Rai S, Manchanda V, Singh NP, Kaur IR. Zinc-dependent carbapenemases in clinical isolates of family Enterobacteriaceae. Indian J Med Microbiol 2011; 29(3): 275-9.
  55. Miriagou V, Papagiannitsis CC, Tzelepi E. Detecting VIM-1 production in proteus mirabilis by an imipenem-dipicolinic acid double disk synergy test? J Clin Microbiol 2010; 48(2): 667-8.
  56. Shin KS, Son BR, Hong SB, Kim J. Dipicolinic acid-based disk methods for detection of metallo-beta-lactamase-producing Pseudomonas spp. and Acinetobacter spp. Diagn Microbiol Infect Dis 2008; 62(1): 102-5.
  57. Kimura S, Ishii Y, Yamaguchi K. Evaluation of dipicolinic acid for detection of IMP- or VIM- type metallo-beta-lactamase-producing Pseudomonas aeruginosa clinical isolates. Diagn Microbiol Infect Dis 2005; 53(3): 241-4.
  58. Pandya NP, Prajapati SB, Mehta SJ, Kikani KM, Joshi PJ. Evaluation of various methods for detection of metallo-β-lactamase (mbl) production in gram negative bacilli. Int J Biol Med Res 2011; 2(3): 775-7.
  59. Mirsalehian A, Akbari Nakhjavani F, Bahador A, Jabal Ameli F, Bigverdi R, Goli H. Prevalence of MBL-producing Pseudomonas aeruginosa isolated from burn patients. Tehran Univ Med J 2011; 68(10): 563-9. [In Persian].