Antibacterial and Antioxidant Characteristics of Pigments and Coelomic Fluid of Sea Urchin, Echinodermata Mathaei Species, from the Persian Gulf


1 Department of Marine Biology, Faculty of Marine Science and Technology, Hormozgan University, Bandar Abbas, Iran

2 Associate Professor, Department of Marine Biology, Faculty of Marine Science and Technology, Hormozgan University, Bandar Abbas, Iran

3 Associate Professor, Molecular Medicine Research Center AND Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

4 Assistant Professor, Department of Marine Biology, Faculty of Marine Science and Technology, Hormozgan University, Bandar Abbas, Iran


Background & Aims: Sea urchin immune responses are directly exposed to potentially pathogenic
microorganisms and develop defence responses mainly based on immunocytes and humoral factors
contained in the coelomic fluid. In addition, the polyhydroxylated 1, 4-naphthoquinone pigments are found
to possess excellent antimicrobial, antialgal and antioxidant activities. The present research aimed to study
the bioactive potentials (antioxidant, antibacterial and cytotoxic) of coelomic fluid and pigments shells and
spines of sea urchin, Echinodermata mathaei species.
Methods: The coelomic fluid and pigments shell and spine of sea urchin were isolated using buffered mode
and hydrogen chloride (HCl), respectively. Then, antioxidant [reducing power, DPPH radical (1, 1-diphenyl
2-picryhydrazyl) scavenging, and total antioxidant capacity), antibacterial (minimum inhibitory
concentration or MIC) and cytotoxic potentials were evaluated.
Results: The free cells of the coelomic fluid had the highest activity in the all antioxidant methods, and
the coelomocyte lysate had the highest antibacterial activity. All the differences were significant at the
level of P < 0.05.
Conclusion: The result of this research indicated that coelomic fluid and pigments shell and spine of sea
urchin, Echinodermata mathaei species, have potent antioxidant activity and the ability for scavenging
cytotoxic effects. This suggests that sea urchin shells and spines, most of which are discarded as waste after
removal of gonads, would be a new bioresource for natural antioxidants


  1. Bragadeeswaran S, Sri Kumaran N, Prasath Sankar P, Prabahar R. Bioactive potential of sea urchin Temnopleurus toreumaticus from Devanampattinam, Southeast coast of India. J Pharm Altern Med 2013; 2(3): 9-17.
  2. Bodnar A. Proteomic profiles reveal age-related changes in coelomic fluid of sea urchin species with different life spans. Experimental Gerontology 2013; 48(5): 525-30.
  3. Arizza V, Giaramita FT, Parrinello D, Cammarata M, Parrinello N. Cell cooperation in coelomocyte cytotoxic activity of Paracentrotus lividus coelomocytes. Comp Biochem Physiol A Mol Integr Physiol 2007; 147(2): 389-94.
  4. Amarowicz R, Synowiecki J, Shahidi F. Chemical composition of shells from red (Strongylocentrotus franciscanus) and green (Strongylocentrotus droebachiensis) sea urchin. Food Chemistry 2012; 133(3): 822-6.
  5. Kuwahara R, Hatate H, Yuki T, Murata H, Tanaka R, Hama Y. Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina. LWT - Food Science and Technology 2009; 42(7): 1296-300.
  6. Smith LC, Ghosh J, Buckley KM, Clow LA, Dheilly NM, Haug T, et al. Echinoderm immunity. Adv Exp Med Biol 2010; 708: 260-301.
  7. Zhou DY, Qin L, Zhu BW, Wang XD, Tan H, Yang JF, et al. Extraction and antioxidant property of polyhydroxylated naphthoquinone pigments from spines of purple sea urchin Strongylocentrotus nudus. Food Chemistry 2011; 129(4): 1591-7.
  8. Khaleghi M, Owfi F. Identification of Echinoidea species in the intertidal zones of Chabahar Bay. Journal of Animal Environment 2010; 2(4): 31-6. [In Persian].
  9. Mahdavi Shahri N, Khazaei Z, Karamzadeh S. Reproductive cycle of the sea urchin echinometra mathaei (Echinodermatidea: Echinoidea) in Bostaneh, Persian Gulf, Iran. Journal of Biological Sciences 2008; 8(7): 1138-48.
  10. Kuwahara R, Hatate H, Chikami A, Murata H, Kijidani Y. Quantitative separation of antioxidant pigments in purple sea urchin shells using a reversed-phase high performance liquid chromatography. LWT - Food Science and Technology 2010; 43(8): 1185-90.
  11. Anderson HA, Mathieson JW, Thomson RH. Distribution of spinochrome pigments in echinoids. Comp Biochem Physiol 1969; 28(1): 333-45.
  12. Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MN. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J Control Release 2006; 113(3): 189-207.
  13. Zou Y, Lu Y, Wei D. Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J Agric Food Chem 2004; 52(16): 5032-9.
  14. Wu SJ, Ng LT. Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan. LWT - Food Science and Technology 2008; 41(2): 323-30.
  15. Duan X, Zhang WW, Li XM, Wang BG. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry 2006; 95(1): 37-43.
  16. Zhou D, Qin L, Zhu B, Li D, Yang J, Dong X, et al. Optimisation of hydrolysis of purple sea urchin (Strongylocentrotus nudus) gonad by response surface methodology and evaluation of in vitro antioxidant activity of the hydrolysate. J Sci Food Agric 2012; 92(8): 1694-701.
  17. Fu L, Xu BT, Xu XR, Gan RY, Zhang Y, Xia EQ, et al. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry 2011; 129(2): 345-50.
  18. Shankarlal S, Prabu K, Natarajan E. Antimicrobial and antioxidant activity of purple sea urchin shell (Salmacis virgulataL. Agassiz and Desor 1846). American-Eurasian Journal of Scientific Research 2011; 6(3): 178-81.
  19. Moein MR, Moein S, Ahmadizadeh S. Radical scavenging and reducing power of Salvia mirzayanii subfractions. Molecules 2008; 13(11): 2804-13.
  20. Vijayabaskar P, Vaseela N, Thirumaran G. Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii. Chinese Journal of Natural Medicines 2012; 10(6): 421-8.
  21. Yousefzadi M, Riahi-Madvar A, Hadian J, Rezaee F, Rafiee R, Biniaz M. Toxicity of essential oil of Satureja khuzistanica: in vitro cytotoxicity and anti-microbial activity. J Immunotoxicol 2014; 11(1): 50-5.
  22. Sorgeloos P, van der Wielen CR, Persoone G. The use of Artemia nauplii for toxicity tests--a critical analysis. Ecotoxicol Environ Saf 1978; 2(3-4): 249-55.
  23. Ferreira CS, Nunes BA, Henriques-Almeida JM, Guilhermino L. Acute toxicity of oxytetracycline and florfenicol to the microalgae Tetraselmis chuii and to the crustacean Artemia parthenogenetica. Ecotoxicol Environ Saf 2007; 67(3): 452-8.
  24. Stabili L, Pagliara P, Roch P. Antibacterial activity in the coelomocytes of the sea urchin Paracentrotus lividus. Comp Biochem Physiol B Biochem Mol Biol 1996; 113(3): 639-44.
  25. Smith LC, Rast JP, Brockton V, Terwilliger DP, Nair SV, Buckley KM, et al. The sea urchin immune system. ISJ 2006; 3: 25-39.
  26. Gorospe J, Nakamura K. Associated bacterial microflora in artemia-rice bran culture. Isr J Aquacult 1996; 48: 99-107.
  27. Vanhaecke P, Persoone G, Claus C, Sorgeloos P. Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicol Environ Saf 1981; 5(3): 382-7.
  28. Mamelona J, Pelletier E, Girard-Lalancette K, Legault J, Karboune S, Kermasha S. Antioxidants in digestive tracts and gonads of green urchin (Strongylocentrotus droebachiensis). Journal of Food Composition and Analysis 2011; 24(2): 179-83.