The Frequency of Carbapenemase Genes in Citrobacter Frundii and Citrobacter Koseri Isolated from Clinical Specimens in Imam Reza Hospital, Kermanshah, Iran

Authors

1 Associate Professor, Department of Medical Microbiology, Nosocomial Infection Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

2 MSc Student, Department of Microbiology, Imam Reaza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran

3 MSc Student, Department of Medical Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran

Abstract

Background & Aims: The inappropriate use of antibiotics has led to antibiotic resistance in microorganisms
of Enterobacteriaceae family, especially in carbapenems. The aim of this study was to identify the
carbapenemase producing Citrobacter frundii and Citrobacter koseri isolated from clinical specimens.
Methods: One hundred Citrobacter isolates from various patient samples in Imam Reza Hospital,
Kermanshah, Iran, were identified using the microbiologic differential tests and API-E20 Kit. After antibiotic
susceptibility testing with disc, the isolates resisted to carbapenems were screened using MHT (Modified
Hodge Test) for the presence of carbapenemases. Then, carbapenemase genes coded Verona integrinencoded
metallo-beta-lactamase (VIM), Klebsiella pneumoniae carbapenemase (KPC), Imipenemase (IMP),
New Delhi metallo-beta-lactamase-1 (NDM) were tested using specific primers via polymerase chain
reaction (PCR) method.
Results: From 100 isolates, 11 cases were carbapenem resistant. In the phenotypic screening test, 2 isolates
were positive. PCR on isolates resistant to carbapenams confirmed VIM gene in 5 isolates: 3 (3.9%) of
Citrobacter frundii and 2 (15.4%) of Citrobacter koseri. But the genes of blaKPC, blaVIM, blaIMP and blaNDM
were not found in isolates. The highest and lowest antibiotic susceptibility were for meropenem (93%) and
cefazolin (1%), respectively.
Conclusion: It seems that the prevalence of carbapenemase genes in Citrobacter kosari and Citrobacter
frundii was low in Kermanshah; however, VIM gene in these two species is probably more prevalent. This
may suggest that most genes have not been high prevalent in this area yet. But, there may be other genes for
resistance to carbapenems in our area which need further investigations. The results indicate that
carbapenems are still effective antibiotics against Citrobacter species

Keywords


  1. Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995; 8(4): 557-84.
  2. Jones ME, Avison MB, Damdinsuren E, MacGowan AP, Bennett PM. Heterogeneity at the beta-lactamase structural gene ampC amongst Citrobacter spp. assessed by polymerase chain reaction analysis: potential for typing at a molecular level. J Med Microbiol 1994; 41(3): 209-14.
  3. Lipsky BA, Hook EW, III, Smith AA, Plorde JJ. Citrobacter infections in humans: experience at the Seattle Veterans Administration Medical Center and a review of the literature. Rev Infect Dis 1980; 2(5): 746-60.
  4. Mohanty S, Singhal R, Sood S, Dhawan B, Kapil A, Das BK. Citrobacter infections in a tertiary care hospital in Northern India. J Infect 2007; 54(1): 58-64.
  5. Nordmann P, Naas T, Poirel L. Global Spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011; 17(10): 1791-8.
  6. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2003; 41(10): 4623-9.
  7. Gazin M, Paasch F, Goossens H, Malhotra-Kumar S. Current trends in culture-based and molecular detection of extended-spectrum-beta-lactamase-harboring and carbapenem-resistant Enterobacteriaceae. J Clin Microbiol 2012; 50(4): 1140-6.
  8. Marsik FJ, Nambiar S. Review of carbapenemases and AmpC-beta lactamases. Pediatr Infect Dis J 2011; 30(12): 1094-5.
  9. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007; 20(3): 440-58, table.
  10. Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother 2010; 65(6): 1119-25.
  11. Shivaprasad A, Antony B, Shenoy P. Comparative evaluation of four phenotypic tests for detection of metallo-beta-lactamase and carbapenemase production in acinetobacter baumannii. J Clin Diagn Res 2014; 8(5): DC05-DC08.
  12. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70(1): 119-23.
  13. Metri BC, Jyothi P, Peerapur BV. Anti-microbial resistance profile of Citrobacter species in a tertiary care hospital of Southern India. Indian J Med Sci 2011; 65(10): 429-35.
  14. Karuniawati A, Saharman YR, Lestari DC. Detection of carbapenemase encoding genes in Enterobacteriace, Pseudomonas aeruginosa, and Acinetobacter baumanii isolated from patients at Intensive Care Unit Cipto Mangunkusumo Hospital in 2011. Acta Med Indones 2013; 45(2): 101-6.
  15. Islam MA, Talukdar PK, Hoque A, Huq M, Nabi A, Ahmed D, et al. Emergence of multidrug-resistant NDM-1-producing Gram-negative bacteria in Bangladesh. Eur J Clin Microbiol Infect Dis 2012; 31(10): 2593-600.
  16. Yanik K, Emir D, Eroglu C, Karadag A, Guney AK, Gunaydin M. [Investigation of the presence of New Delhi metallo-beta-lactamase-1 (NDM-1) by PCR in carbapenem-resistant gram-negative isolates]. Mikrobiyol Bul 2013; 47(2): 382-4.
  17. Lee CM, Liao CH, Lee WS, Liu YC, Mu JJ, Lee MC, et al. Outbreak of Klebsiella pneumoniae carbapenemase-2-producing K. pneumoniae sequence type 11 in Taiwan in 2011. Antimicrob Agents Chemother 2012; 56(10): 5016-22.
  18. Peirano G, Ahmed-Bentley, Fuller J, Rubin JE, Pitout JDD. Travel-related carbapenemase-producing gram-negative bacteria in Alberta, Canada: the first 3 years. J Clin Microbiol 2014; 52(5): 1575-81.
  19. Zhang R, Yang L, Cai JC, Zhou HW, Chen GX. High-level carbapenem resistance in a Citrobacter freundii clinical isolate is due to a combination of KPC-2 production and decreased porin expression. J Med Microbiol 2008; 57(Pt 3): 332-7.
  20. Li G, Wei Q, Wang Y, Du X, Zhao Y, Jiang X. Novel genetic environment of the plasmid-mediated KPC-3 gene detected in Escherichia coli and Citrobacter freundii isolates from China. Eur J Clin Microbiol Infect Dis 2011; 30(4): 575-80.
  21. Bratu S, Brooks S, Burney S, Kochar S, Gupta J, Landman D, et al. Detection and spread of Escherichia coli possessing the plasmid-borne carbapenemase KPC-2 in Brooklyn, New York. Clin Infect Dis 2007; 44(7): 972-5.
  22. Bratu S, Mooty M, Nichani S, Landman D, Gullans C, Pettinato B, et al. Emergence of KPC-possessing Klebsiella pneumoniae in Brooklyn, New York: epidemiology and recommendations for detection. Antimicrob Agents Chemother 2005; 49(7): 3018-20.
  23. Rasheed JK, Biddle JW, Anderson KF, Washer L, Chenoweth C, Perrin J, et al. Detection of the Klebsiella pneumoniae carbapenemase type 2 Carbapenem-hydrolyzing enzyme in clinical isolates of Citrobacter freundii and K. oxytoca carrying a common plasmid. J Clin Microbiol 2008; 46(6): 2066-9.
  24. Rimrang B, Chanawong A, Lulitanond A, Wilailuckana C, Charoensri N, Sribenjalux P, et al. Emergence of NDM-1- and IMP-14a-producing Enterobacteriaceae in Thailand. J Antimicrob Chemother 2012; 67(11): 2626-30.
  25. Oteo J, Saez D, Bautista V, Fernandez-Romero S, Hernandez-Molina JM, Perez-Vazquez M, et al. Carbapenemase-producing enterobacteriaceae in Spain in 2012. Antimicrob Agents Chemother 2013; 57(12): 6344-7.
  26. Zujic AV, Bedenic B, Kocsis E, Mazzariol A, Sardelic S, Barisic M, et al. Diversity of carbapenemases in clinical isolates of Enterobacteriaceae in Croatia--the results of a multicentre study. Clin Microbiol Infect 2014; 20(11): O894-O903.