Expandable DNA Repeat and Human Hereditary Disorders


1 Ph.D. Candidate of Genetics, Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran

2 Ph.D. Candidate of Genetics, Department of Genetics, School of Biology, Tarbiat Modares University, Tehran, Iran

3 Master of Nursing, Iranian Research Center on Healthy Aging, Sabzevar University of Medical Sciences, Sabzevar, Iran

4 Professor, Department of Human Genetics, School of Medicine, Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran


Background & Aims: Nearly 30 hereditary disorders in humans result from an increase in the number of copies of simple repeats in genomic DNA, including fragile X syndrome, myotonic dystrophy, Huntington’s disease, and Friedreich’s ataxia. One the most frequently occurring types of mutation is trinucleotide repeat expansion. The present study was conducted with the aim of investigating the cause and molecular mechanisms of repeat expansions DNA and their pathogenic mechanisms in diverse classes of genetic diseases. Methods: Scientific databases were searched using the keywords expandable DNA repeat fragile X, myotonic dystrophy, Huntington’s disease, and Friedreich’s ataxia. After primary screening, articles which were related to the studies topic were further considered and analyzed. Results: DNA repeats seem to be predisposed to such expansion due to their unusual structural features, which disrupt the cellular replication, repair, and recombination processes. The majority of these debilitating diseases are caused by repeat expansions in the noncoding regions of their resident genes. The pathogenic mechanism underling these disorders include loss of function in protein and gain of function in protein or ribonucleic acid (RNA). Conclusion: Although diseases caused by trinucleotide repeat expansion vary in their phenotypes, they are somewhat similar in their pathogenic mechanism and medical findings. It is likely that progress made in this field will be beneficial to patients who have other neurological diseases


  1. Mirkin SM. Expandable DNA repeats and human disease. Nature 2007; 447(7147): 932-40.
  2. Mandel JL, Biancalana V. Fragile X mental retardation syndrome: from pathogenesis to diagnostic issues. Growth Horm IGF Res 2004; 14(Suppl A): S158-S165.
  3. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991; 65(5): 905-14.
  4. Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K, Baker E, et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 1991; 252(5013): 1711-4.
  5. Mirkin SM. Molecular models for repeat expansions. Chemtracts Biochemistry and Molecular Biology 2004; 17: 639-62.
  6. Pearson CE, Nichol EK, Cleary JD. Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 2005; 6(10): 729-42.
  7. Potaman VN, Bissler JJ, Hashem VI, Oussatcheva EA, Lu L, Shlyakhtenko LS, et al. Unpaired structures in SCA10 (ATTCT)n.(AGAAT)n repeats. J Mol Biol 2003; 326(4): 1095-111.
  8. Vetcher AA, Napierala M, Iyer RR, Chastain PD, Griffith JD, Wells RD. Sticky DNA, a long GAA.GAA.TTC triplex that is formed intramolecularly, in the sequence of intron 1 of the frataxin gene. J Biol Chem 2002; 277(42): 39217-27.
  9. Sakamoto N, Larson JE, Iyer RR, Montermini L, Pandolfo M, Wells RD. GGA*TCC-interrupted triplets in long GAA*TTC repeats inhibit the formation of triplex and sticky DNA structures, alleviate transcription inhibition, and reduce genetic instabilities. J Biol Chem 2001; 276(29): 27178-87.
  10. Cleary JD, Nichol K, Wang YH, Pearson CE. Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nat Genet 2002; 31(1): 37-46.
  11. Rindler M, Clark RM, Pollard LM, de Biase I, Bidichandani SI. Replication in mammalian cells recapitulates the locus-specific differences in somatic instability of genomic GAA triplet-repeats. Nucleic Acids Res 2006; 34(21): 6352-61.
  12. Bhattacharyya S, Lahue RS. Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats. Mol Cell Biol 2004; 24(17): 7324-30.
  13. Daee DL, Mertz T, Lahue RS. Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27(1): 102-10.
  14. Pelletier R, Krasilnikova MM, Samadashwily GM, Lahue R, Mirkin SM. Replication and expansion of trinucleotide repeats in yeast. Mol Cell Biol 2003; 23(4): 1349-57.
  15. Fouché N, Özgür S, Roy D, Griffith JD. Replication fork regression in repetitive DNAs. Nucleic Acids Res 2006; 34(20): 6044-50.
  16. Savouret C, Brisson E, Essers J, Kanaar R, Pastink A, Riele H, et al. CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J 2003; 22(9): 2264-73.
  17. van den Broek WJ, Nelen MR, Wansink DG, Coerwinkel MM, te Riele H, Groenen PJ, et al. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum Mol Genet 2002; 11(2): 191-8.
  18. Owen BA, Yang Z, Lai M, Gajec M, Badger JD, Hayes JJ, et al. (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition. Nat Struct Mol Biol 2005; 12(8): 663-70.
  19. Savouret C, Garcia-Cordier C, Megret J, te Riele H, Junien C, Gourdon G. MSH2-dependent germinal CTG repeat expansions are produced continuously in spermatogonia from DM1 transgenic mice. Mol Cell Biol 2004; 24(2): 629-37.
  20. Yoon S, Dubeau L, de Young M, Wexler NS, Arnheim N. Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc Natl Acad Sci U S A 2003; 100(15): 8834-8.
  21. Liu Y, Zhang H, Veeraraghavan J, Bambara RA, Freudenreich CH. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol Cell Biol 2004; 24(9): 4049-64.
  22. van den Broek WJ, Nelen MR, van der Heijden GW, Wansink DG, Wieringa B. Fen1 does not control somatic hypermutability of the (CTG)(n)*(CAG)(n) repeat in a knock-in mouse model for DM1. FEBS Lett 2006; 580(22): 5208-14.
  23. Napierala M, Dere R, Vetcher A, Wells RD. Structure-dependent recombination hot spot activity of GAA.TTC sequences from intron 1 of the Friedreich's ataxia gene. J Biol Chem 2004; 279(8): 6444-54.
  24. Dere R, Wells RD. DM2 CCTG*CAGG repeats are crossover hotspots that are more prone to expansions than the DM1 CTG*CAG repeats in Escherichia coli. J Mol Biol 2006; 360(1): 21-36.
  25. Siyanova EY, Mirkin SM. Expansion of trinucleotide repeats. Molecular Biology 2001; 35(2): 168-82.
  26. Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 2005; 6(10): 743-55.
  27. Turner C, Hilton-Jones D. The myotonic dystrophies: diagnosis and management. J Neurol Neurosurg Psychiatry 2010; 81(4): 358-67.
  28. Garber KB, Visootsak J, Warren ST. Fragile X syndrome. European Journal of Human Genetics 2008; 16: 666-72.
  29. Pop AS, Gomez-Mancilla B, Neri G, Willemsen R, Gasparini F. Fragile X syndrome: a preclinical review on metabotropic glutamate receptor 5 (mGluR5) antagonists and drug development. Psychopharmacology (Berl) 2014; 231(6): 1217-26.
  30. Di Prospero NA, Fischbeck KH. Therapeutics development for triplet repeat expansion diseases. Nat Rev Genet 2005; 6(10): 756-65.
  31. Hagerman R, Hagerman P. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol 2013; 12(8): 786-98.
  32. Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci 2004; 27(7): 370-7.
  33. Sourial M, Cheng C, Doering LC. Progress toward therapeutic potential for AFQ056 in Fragile X syndrome. Journal of Experimental Pharmacology 2013; 2013(5): 45-54.
  34. McBride SM, Choi CH, Wang Y, Liebelt D, Braunstein E, Ferreiro D, et al. Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 2005; 45(5): 753-64.
  35. Mirkin SM. DNA structures, repeat expansions and human hereditary disorders. Curr Opin Struct Biol 2006; 16(3): 351-8.
  36. Bidichandani SI, Delatycki MB. Friedreich ataxia [Online]. [cited 2014 Jul 24]; Available from: URL: http://www.ncbi.nlm.nih.gov/books/NBK1281/
  37. Pandolfo M. Friedreich ataxia. Arch Neurol 2008; 65(10): 1296-303.
  38. Sandi C, Al-Mahdawi S, Pook MA. Epigenetics in Friedreich's Ataxia: Challenges and Opportunities for Therapy. Genetics Research International 2013; 2013: 12.
  39. Koeppen AH. Friedreich's ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci 2011; 303(1-2): 1-12.
  40. Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 2003; 422(6934): 909-13.
  41. Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat Chem Biol 2006; 2(10): 551-8.
  42. Yoon T, Cowan JA. Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J Am Chem Soc 2003; 125(20): 6078-84.
  43. Yoon T, Cowan JA. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J Biol Chem 2004; 279(25): 25943-6.
  44. Voncken M, Ioannou P, Delatycki MB. Friedreich ataxia-update on pathogenesis and possible therapies. Neurogenetics 2004; 5(1): 1-8.
  45. Sarsero JP, Li L, Wardan H, Sitte K, Williamson R, Ioannou PA. Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxia. J Gene Med 2003; 5(1): 72-81.
  46. Ross C, Aylward E, Wild E, Langbehn D, Long JD, Warner JH, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nature Reviews Neurology 2014; 10: 204-16.
  47. Bates G, Tabrizi S, Jones L. Huntington's disease. Oxford, UK: Oxford University Press; 2014. p. 6078-84.
  48. Sanchez I, Mahlke C, Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 2003; 421(6921): 373-9.
  49. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 2004; 10(2): 148-54.
  50. Beal MF, Ferrante RJ. Experimental therapeutics in transgenic mouse models of Huntington's disease. Nat Rev Neurosci 2004; 5(5): 373-84.
  51. Taylor JP, Taye AA, Campbell C, Kazemi-Esfarjani P, Fischbeck KH, Min KT. Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Genes Dev 2003; 17(12): 1463-8.
  52. Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science 2003; 301(5634): 798-802.
  53. Gottlicher M. Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann Hematol 2004; 83(Suppl 1): S91-S92.
  54. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004; 10(8): 816-20.
  55. Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc Natl Acad Sci U S A 2005; 102(16): 5820-5.
  56. Huntington Study Group. A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington's disease. Neurology 2001; 57(3): 397-404.
  57. Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 2012; 11(10): 891-905.
  58. Ho TH, Charlet B, Poulos MG, Singh G, Swanson MS, Cooper TA. Muscleblind proteins regulate alternative splicing. EMBO J 2004; 23(15): 3103-12.
  59. Kino Y, Mori D, Oma Y, Takeshita Y, Sasagawa N, Ishiura S. Muscleblind protein, MBNL1/EXP, binds specifically to CHHG repeats. Hum Mol Genet 2004; 13(5): 495-507.
  60. Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM, Thornton CA, et al. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci U S A 2006; 103(31): 11748-53.
  61. Krol J, Fiszer A, Mykowska A, Sobczak K, de Mezer M, Krzyzosiak WJ. Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol Cell 2007; 25(4): 575-86.
  62. Meola G, Sansone V. Treatment in myotonia and periodic paralysis. Rev Neurol (Paris) 2004; 160(5 Pt 2): S55-S69.
  63. Furuya H, Shinnoh N, Ohyagi Y, Ikezoe K, Kikuchi H, Osoegawa M, et al. Some flavonoids and DHEA-S prevent the cis-effect of expanded CTG repeats in a stable PC12 cell transformant. Biochem Pharmacol 2005; 69(3): 503-16.