Point Mutations in RET Proto-Oncogene Exon 10 in Patients with Medullary Thyroid Carcinoma

Authors

1 Ph.D. Student, Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Master of Biochemistry, Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Master of Human Genetics, Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Professor, Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

5 Associate Professor, Cellular and Molecular Research Center, Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Background & Aims: Thyroid cancer is the most common endocrine malignancy. Medullary thyroid carcinoma (MTC) is an aggressive malignant tumor arising from parafollicular cells of the thyroid. MTC occurs in hereditary (25%, hMTC) or sporadic (75%, sMTC) forms. The hMTC form has an autosomal dominant inheritance. RET proto-oncogene mutations, especially the 10, 11, and 16 exones, are associated with MTC. The aim of this study was to determine the type and frequency of RET proto-oncogene exon 10 in patients with MTC. Methods: The study participants included 347 individuals, including 207 patients and 140 of their first degree relatives. Genomic DNA was extracted from peripheral leukocytes using salting out/Proteinase K method. All individuals were tested for RET mutations in exon 10 using polymerase chain reaction (PCR)- DNA sequencing method. Results: A total of 14 germline missense RET mutations were identified in cysteine codons 611, 618, and 620 in 11 patients(10 mutation in males, 4 in females), and 3 of their first-degree relatives (frequency: 3.6%) which were as follows: four C611Y (three FMTC, one relative), one C618R (FMTC), one C618S (sMTC), one C620G (sMTC), four C620R (one FMTC, three sMTC), and three C620F (one FMTC, two relatives). The most predominant mutations in exon 10 in our FMTC and sMTC patients were C611Y and C620R, respectively. We did not find any mutations in cysteine codon 609. Conclusion: In the present study, 6 different types of missense mutations were identified in exon 10 of RET in the nonsyndromic form of MTC. Based on the results of this study, mutation detection using DNA sequencing in exons 10, 11, and 16 of RET in patients with MTC and their relatives is recommended.

Keywords


  1. Ibanez CF. Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb Perspect Biol 2013; 5(2).
  2. Ishizaka Y, Itoh F, Tahira T, Ikeda I, Sugimura T, Tucker J, et al. Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene 1989; 4(12): 1519-21.
  3. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 1985; 42(2): 581-8.
  4. Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 1994; 367(6461): 380-3.
  5. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990; 60(4): 557-63.
  6. Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM, Jr., et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 1996; 384(6608): 467-70.
  7. Treanor JJ, Goodman L, de SF, Stone DM, Poulsen KT, Beck CD, et al. Characterization of a multicomponent receptor for GDNF. Nature 1996; 382(6586): 80-3.
  8. Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 1998; 21(6): 1291-302.
  9. Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 1998; 20(2): 245-53.
  10. Trupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, Grigoriou M, et al. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 1996; 381(6585): 785-9.
  11. Kjaer S, Ibanez CF. Identification of a surface for binding to the GDNF-GFR alpha 1 complex in the first cadherin-like domain of RET. J Biol Chem 2003; 278(48): 47898-904.
  12. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 2006; 6(4): 292-306.
  13. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 2013; 13(3): 184-99.
  14. Oberg K. The genetics of neuroendocrine tumors. Semin Oncol 2013; 40(1): 37-44.
  15. Roman S, Lin R, Sosa JA. Prognosis of medullary thyroid carcinoma: demographic, clinical, and pathologic predictors of survival in 1252 cases. Cancer 2006; 107(9): 2134-42.
  16. Campbell MJ, Seib CD, Gosnell J. Vandetanib and the management of advanced medullary thyroid cancer. Curr Opin Oncol 2013; 25(1): 39-43.
  17. Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 2014; 386(1-2): 2-15.
  18. Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab 2001; 86(12): 5658-71.
  19. Kloos RT, Eng C, Evans DB, Francis GL, Gagel RF, Gharib H, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 2009; 19(6): 565-612.
  20. Figlioli G, Landi S, Romei C, Elisei R, Gemignani F. Medullary thyroid carcinoma (MTC) and RET proto-oncogene: mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form. Mutat Res 2013; 752(1): 36-44.
  21. Romei C, Cosci B, Renzini G, Bottici V, Molinaro E, Agate L, et al. RET genetic screening of sporadic medullary thyroid cancer (MTC) allows the preclinical diagnosis of unsuspected gene carriers and the identification of a relevant percentage of hidden familial MTC (FMTC). Clin Endocrinol (Oxf) 2011; 74(2): 241-7.
  22. Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, et al. Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature 1994; 367(6461): 378-80.
  23. Manie S, Santoro M, Fusco A, Billaud M. The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet 2001; 17(10): 580-9.
  24. Pasini B, Rossi R, Ambrosio MR, Zatelli MC, Gullo M, Gobbo M, et al. RET mutation profile and variable clinical manifestations in a family with multiple endocrine neoplasia type 2A and Hirschsprung's disease. Surgery 2002; 131(4): 373-81.
  25. Boikos SA, Stratakis CA. Molecular mechanisms of medullary thyroid carcinoma: current approaches in diagnosis and treatment. Histol Histopathol 2008; 23(1): 109-16.
  26. Elisei R, Cosci B, Romei C, Bottici V, Renzini G, Molinaro E, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 2008; 93(3): 682-7.
  27. Hedayati M, Nabipour I, Rezaei-Ghaleh N, Azizi F. Germline RET mutations in exons 10 and 11: an Iranian survey of 57 medullary thyroid carcinoma cases. Med J Malaysia 2006; 61(5): 564-9.
  28. Alvandi E, Akrami SM, Chiani M, Hedayati M, Nayer BN, Tehrani MR, et al. Molecular analysis of the RET proto-oncogene key exons in patients with medullary thyroid carcinoma: a comprehensive study of the Iranian population. Thyroid 2011; 21(4): 373-82.
  29. Hedayati M, Zarif Yeganeh ZY, Sheikhol Eslami S, Rezghi Barez S, Hoghooghi Rad L, Azizi F. Predominant RET Germline Mutations in Exons 10, 11, and 16 in Iranian Patients with Hereditary Medullary Thyroid Carcinoma. Journal of Thyroid Research 2011; 2011: 1.
  30. Sheikholeslami S, Zarif Yeganeh M, Hoghooghi Rad L, Golabghadaksaz H, Hedayati M. Haplotype frequency of G691S/S904S in the RET proto-onco-gene in patients with medullary thyroid carcinoma. Iranian J Publ Health 2014; 43(2): 235-40.
  31. Frank-Raue K, Rybicki LA, Erlic Z, Schweizer H, Winter A, Milos I, et al. Risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germline RET mutations located in exon 10. Hum Mutat 2011; 32(1): 51-8.
  32. Qari F. RET codon 618 mutations in Saudi families with multiple endocrine neoplasia Type 2A and familial medullary thyroid carcinoma. Ann Saudi Med 2013; 33(2): 155-8.
  33. Neocleous V, Skordis N, Portides G, Efstathiou E, Costi C, Ioannou N, et al. RET proto-oncogene mutations are restricted to codon 618 in Cypriot families with multiple endocrine neoplasia 2. J Endocrinol Invest 2011; 34(10): 764-9.
  34. Paun DL, Mohora M, Duta C, Dumitrache C. Genetic testing for multiple endocrine neoplasia type 2. Rom J Intern Med 2008; 46(2): 159-63.
  35. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995; 267(5196): 381-3.
  36. Arlt DH, Baur B, Wagner B, Hoppner W. A novel type of mutation in the cysteine rich domain of the RET receptor causes ligand independent activation. Oncogene 2000; 19(30): 3445-8.
  37. Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab 2013; 98(2): E364-E369.
  38. Frank-Raue K, Rondot S, Schulze E, Raue F. Change in the spectrum of RET mutations diagnosed between 1994 and 2006. Clin Lab 2007; 53(5-6): 273-82.
  39. Machens A, Niccoli-Sire P, Hoegel J, Frank-Raue K, van Vroonhoven TJ, Roeher HD, et al. Early malignant progression of hereditary medullary thyroid cancer. N Engl J Med 2003; 349(16): 1517-25.
  40. Machens A, Holzhausen HJ, Thanh PN, Dralle H. Malignant progression from C-cell hyperplasia to medullary thyroid carcinoma in 167 carriers of RET germline mutations. Surgery 2003; 134(3): 425-31.
  41. Mulligan LM, Eng C, Healey CS, Clayton D, Kwok JB, Gardner E, et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet 1994; 6(1): 70-4.
  42. Smith DP, Houghton C, Ponder BA. Germline mutation of RET codon 883 in two cases of de novo MEN 2B. Oncogene 1997; 15(10): 1213-7.
  43. Gimm O, Marsh DJ, Andrew SD, Frilling A, Dahia PL, Mulligan LM, et al. Germline dinucleotide mutation in codon 883 of the RET proto-oncogene in multiple endocrine neoplasia type 2B without codon 918 mutation. J Clin Endocrinol Metab 1997; 82(11): 3902-4.
  44. Iwashita T, Asai N, Murakami H, Matsuyama M, Takahashi M. Identification of tyrosine residues that are essential for transforming activity of the ret proto-oncogene with MEN2A or MEN2B mutation. Oncogene 1996; 12(3): 481-7.
  45. Database of Single Nucleotide Polymorphisms (dbSNP). Bethesda(MD): National Center for Biotechnology Information, NationalLibrary of Medicine. (dbSNP Build ID: {build ID}) 2013.
  46. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutationsin human cancer. Nucleic Acids Res. 2014; 43: D 805–11. doi:10.1093/nar/gku1075
  47. Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, et al. Ensembl 2013. Nucleic Acids Res. 2013; 41: D 48-55.doi: 10.1093/nar/gks 1236
  48. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, et al. The Human Gene Mutation Database (HGMD®): 2003 update. Hum Mutat 2003; 21: 577–81