The Role of Hypocretin/Orexin in Stress-Induced Analgesia


1 Department of Basic Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran

2 Associate Professor, Department of Physiology & Oharmacology, Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran

3 Associate Professor, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran


Orexin is produced exclusively in the lateral hypothalamus, where it is known to be involved in pain modulation through brain stem. Due to the important role of this peptide in functions such as eating, sleeping and awaking, addiction, it attracted the attention of researchers in medical sciences specially neuroscientists. These hypothalamic peptides play a critical role in arousal in stressful situations and in pain modulation. Moreover, orexin receptors (OXRs) have been found in many brain structures involved in pain processing. In the present study, the role of orexin in stress-induced analgesia is reviewed. Although, intracerebroventricular or spinal injection of orexin-A have been shown to elicit analgesic responses; however, the locations of central sites that may mediate these effects have not been clearly elucidated. On the other hand, it is unclear in which stressful situations the nociceptive information is altered. It seems that in stressful situations, orexin expression increases which increases arousal, and thus, leads to elevation of animal performance and nociceptive signals blockage, which improve performance in stressfulsituations. It is well-established that the acute and chronic forms of stress can affect the orexin system and might be responsible for changes in both pain threshold and nociceptive behaviors. It is suggested that OXR1 might be involved in antinociception behaviors induced by stress. This review highlights the significant role of OXR1 as a novel target for treatment of stress-related disorders.


  1. Bodnar RJ, Kelly DD, Brutus M, Glusman M. Stress-induced analgesia: neural and hormonal determinants. Neurosci Biobehav Rev 1980; 4(1): 87-100.
  2. Madden J, Akil H, Patrick RL, Barchas JD. Stress-induced parallel changes in central opioid levels and pain responsiveness in the rat. Nature 1977; 265(5592): 358-60.
  3. Guillemin R, Vargo T, Rossier J, Minick S, Ling N, Rivier C, et al. beta-Endorphin and adrenocorticotropin are selected concomitantly by the pituitary gland. Science 1977; 197(4311): 1367-9.
  4. Butler RK, Finn DP. Stress-induced analgesia. Prog Neurobiol 2009; 88(3): 184-202.
  5. Azhdari-Zarmehri H, Heidari-Oranjaghi N, Soleimani N, Sofi-Abadi M. Effects of lidocaine injections into the rostral ventromedial medulla on nociceptive behviours in hot-plate and formalin tests in rats. Koomesh 2013; 14(4): 490-6. [In Persian].
  6. Heidari-Oranjaghi N, Azhdari-Zarmehri H, Erami E, Haghparast A. Antagonism of orexin-1 receptors attenuates swim- and restraint stress-induced antinociceptive behaviors in formalin test. Pharmacol Biochem Behav 2012; 103(2): 299-307. [In Persian].
  7. Azhdari-Zarmehri H, Rahmani A, Puzesh S, Erami E, Emamjomeh M. Assessing the Effect of Lidocaine Injection into the Nucleus Paragigantocellularislateralis on Formalin Test and Hot Plate Test Induced Nociceptive Behaviors in Rats. J Zanjan Univ Med Sci 2013; 21(85): 10-29. [In Persian].
  8. Fields HL, Heinricher MM. Anatomy and physiology of a nociceptive modulatory system. Philos Trans R Soc Lond B Biol Sci 1985; 308(1136): 361-74.
  9. Heinricher MM. Nociceptin/orphanin FQ: pain, stress and neural circuits. Life Sci 2005; 77(25): 3127-32.
  10. Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res Rev 2009; 60(1): 214-25.
  11. Sofiabad M, Heidari N, Ghasemi E, Esmaeili M, Haghdoost-Yazdi H, Erami E, et al. Assesment of orexin receptor 1 in stress attenuated nociceptive behaviours in formalin test. Physiol Pharmacol 2011; 15(3): 395-402. [In Persian].
  12. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92(4): 573-85.
  13. de LL, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 1998; 95(1): 322-7.
  14. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K. Distribution of orexin neurons in the adult rat brain. Brain Res 1999; 827(1-2): 243-60.
  15. Kinomura S, Larsson J, Gulyas B, Roland PE. Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 1996; 271(5248): 512-5.
  16. Portas CM, Rees G, Howseman AM, Josephs O, Turner R, Frith CD. A specific role for the thalamus in mediating the interaction of attention and arousal in humans. J Neurosci 1998; 18(21): 8979-89.
  17. Lambe EK, Liu RJ, Aghajanian GK. Schizophrenia, hypocretin (orexin), and the thalamocortical activating system. Schizophr Bull 2007; 33(6): 1284-90.
  18. Peyron C, Tighe DK, van den Pol AN, de LL, Heller HC, Sutcliffe JG, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 1998; 18(23): 9996-10015.
  19. Berridge CW, Espana RA, Vittoz NM. Hypocretin/orexin in arousal and stress. Brain Res 2010; 1314: 91-102.
  20. van den Top M, Nolan MF, Lee K, Richardson PJ, Buijs RM, Davies CH, et al. Orexins induce increased excitability and synchronisation of rat sympathetic preganglionic neurones. J Physiol 2003; 549(Pt 3): 809-21.
  21. Smith PM, Connolly BC, Ferguson AV. Microinjection of orexin into the rat nucleus tractus solitarius causes increases in blood pressure. Brain Res 2002; 950(1-2): 261-7.
  22. Kayaba Y, Nakamura A, Kasuya Y, Ohuchi T, Yanagisawa M, Komuro I, et al. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 2003; 285(3): R581-R593.
  23. Yoshimichi G, Yoshimatsu H, Masaki T, Sakata T. Orexin-A regulates body temperature in coordination with arousal status. Exp Biol Med (Maywood) 2001; 226(5): 468-76.
  24. Samson WK, Gosnell B, Chang JK, Resch ZT, Murphy TC. Cardiovascular regulatory actions of the hypocretins in brain. Brain Res 1999; 831(1-2): 248-53.
  25. Lubkin M, Stricker-Krongrad A. Independent feeding and metabolic actions of orexins in mice. Biochem Biophys Res Commun 1998; 253(2): 241-5.
  26. Jaszberenyi M, Bujdoso E, Pataki I, Telegdy G. Effects of orexins on the hypothalamic-pituitary-adrenal system. J Neuroendocrinol 2000; 12(12): 1174-8.
  27. Samson WK, Bagley SL, Ferguson AV, White MM. Hypocretin/orexin type 1 receptor in brain: role in cardiovascular control and the neuroendocrine response to immobilization stress. Am J Physiol Regul Integr Comp Physiol 2007; 292(1): R382-R387.
  28. Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A 1999; 96(19): 10911-6.
  29. Ivanov A, Aston-Jones G. Hypocretin/orexin depolarizes and decreases potassium conductance in locus coeruleus neurons. Neuroreport 2000; 11(8): 1755-8.
  30. Amit Z, Galina ZH. Stress-induced analgesia: adaptive pain suppression. Physiol Rev 1986; 66(4): 1091-120.
  31. Akil H, Young E, Walker JM, Watson SJ. The many possible roles of opioids and related peptides in stress-induced analgesia. Ann N Y Acad Sci 1986; 467: 140-53.
  32. Fanselow MS, Calcagnetti DJ, Helmstetter FJ. Role of mu and kappa opioid receptors in conditional fear-induced analgesia: the antagonistic actions of nor-binaltorphimine and the cyclic somatostatin octapeptide, Cys2Tyr3Orn5Pen7-amide. J Pharmacol Exp Ther 1989; 250(3): 825-30.
  33. McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res 2000; 886(1-2): 172-89.
  34. Imbe H, Murakami S, Okamoto K, Iwai-Liao Y, Senba E. The effects of acute and chronic restraint stress on activation of ERK in the rostral ventromedial medulla and locus coeruleus. Pain 2004; 112(3): 361-71.
  35. Watanabe S, Kuwaki T, Yanagisawa M, Fukuda Y, Shimoyama M. Persistent pain and stress activate pain-inhibitory orexin pathways. Neuroreport 2005; 16(1): 5-8.
  36. Bodnar RJ, Sikorszky V. Naloxone and cold-water swim analgesia: Parametric considerations and individual differences? Learning and Motivation 1983; 14(2): 223-37.
  37. Martin WR. Pharmacology of opioids. Pharmacol Rev 1983; 35(4): 283-323.
  38. Watkins LR, Mayer DJ. Organization of endogenous opiate and nonopiate pain control systems. Science 1982; 216(4551): 1185-92.
  39. Lafrance M, Roussy G, Belleville K, Maeno H, Beaudet N, Wada K, et al. Involvement of NTS2 receptors in stress-induced analgesia. Neuroscience 2010; 166(2): 639-52.
  40. Lewis JW, Cannon JT, Liebeskind JC. Opioid and nonopioid mechanisms of stress analgesia. Science 1980; 208(4444): 623-5.
  41. Azhdari Zarmehri H, Semnanian S, Fathollahi Y. Comparing the analgesic effects of periaqueductal gray matter injection of orexin A and morphine on formalin- induced nociceptive behaviors. Physiol Pharmacol 2008; 12(3): 188-93. [In Persian].
  42. Azhdari Zarmehri H, Semnanian S, Fathollahi Y. Orexin A modulates rostral ventromedial medulla neuronal activity of rat in vitro. Neuroscience Research 2010; 68(Supple 1): e102. [In Persian].
  43. Azhdari ZH, Semnanian S, Fathollahi Y, Erami E, Khakpay R, Azizi H, et al. Intra-periaqueductal gray matter microinjection of orexin-A decreases formalin-induced nociceptive behaviors in adult male rats. J Pain 2011; 12(2): 280-7. [In Persian].
  44. Bingham S, Davey PT, Babbs AJ, Irving EA, Sammons MJ, Wyles M, et al. Orexin-A, an hypothalamic peptide with analgesic properties. Pain 2001; 92(1-2): 81-90.
  45. Mobarakeh JI, Takahashi K, Sakurada S, Nishino S, Watanabe H, Kato M, et al. Enhanced antinociception by intracerebroventricularly and intrathecally-administered orexin A and B (hypocretin-1 and -2) in mice. Peptides 2005; 26(5): 767-77.
  46. Yamamoto T, Nozaki-Taguchi N, Chiba T. Analgesic effect of intrathecally administered orexin-A in the rat formalin test and in the rat hot plate test. Br J Pharmacol 2002; 137(2): 170-6.
  47. Kiss A. Immobilization induced fos expression in the medial and lateral hypothalamic areas: a limited response of hypocretin neurons. Ideggyogy Sz 2007; 60(3-4): 192-5.
  48. Ida T, Nakahara K, Murakami T, Hanada R, Nakazato M, Murakami N. Possible involvement of orexin in the stress reaction in rats. Biochem Biophys Res Commun 2000; 270(1): 318-23.
  49. Ciriello J, de Oliveira CV. Cardiac effects of hypocretin-1 in nucleus ambiguus. Am J Physiol Regul Integr Comp Physiol 2003; 284(6): R1611-R1620.
  50. Ciriello J, McMurray JC, Babic T, de Oliveira CV. Collateral axonal projections from hypothalamic hypocretin neurons to cardiovascular sites in nucleus ambiguus and nucleus tractus solitarius. Brain Res 2003; 991(1-2): 133-41.
  51. Date Y, Mondal MS, Matsukura S, Nakazato M. Distribution of orexin-A and orexin-B (hypocretins) in the rat spinal cord. Neurosci Lett 2000; 288(2): 87-90.
  52. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 1998; 438(1-2): 71-5.
  53. van den Pol AN. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J Neurosci 1999; 19(8): 3171-82.
  54. Lopez R, Cox VC. Analgesia for tonic pain by self-administered lateral hypothalamic stimulation. Neuroreport 1992; 3(4): 311-4.
  55. Heinrichs SC, Menzaghi F, Merlo PE, Britton KT, Koob GF. The role of CRF in behavioral aspects of stress. Ann N Y Acad Sci 1995; 771: 92-104.
  56. Koob GF, Cole BJ, Swerdlow NR, Le MM, Britton KT. Stress, performance, and arousal: focus on CRF. NIDA Res Monogr 1990; 97: 163-76.
  57. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 2001; 435(1): 6-25.
  58. Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, et al. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci 2004; 24(50): 11439-48.
  59. Chiou LC, Hu SS, Ho YC. Targeting the cannabinoid system for pain relief? Acta Anaesthesiol Taiwan 2013; 51(4): 161-70.
  60. Hu SS, Ho YC, Chiou LC. No more pain upon Gq-protein-coupled receptor activation: role of endocannabinoids. Eur J Neurosci 2014; 39(3): 467-84.