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Abstract 

Background: Photocatalytic process is used as a suitable method for o-chlorophenol removal. In this 

study, the efficiency of a mixture of modified fly ash and TiO2 nanoparticles in photocatalytic removal 

of o-chlorophenol was evaluated. 

Methods: After acid washing of fly ash, the absorbent was oxidized with potassium permanganate. 

Then, the substrate mixture of modified fly ash and TiO2 nanoparticles was used for photocatalytic 

decomposition of o-chlorophenol.  

Results: The percentage of carbon increased from 77.94% to 86.52% after acid washing of fly ash and 

absorption efficiency increased from 58.8% up to 83.3%. During the oxidation of acid washed fly ash, 

absorption efficiency reached to 93.27%. Photocatalytic removal efficiency of o-chlorophenol by 

mixture of modified fly ash and TiO2 increased to 98.9%. Photocatalytic removal efficiency of o-

chlorophenol by TiO2/UV and without use of fly ash was 78.7%. 

Conclusion: Industrial application of this method recommended because of the simple modification, 

high efficiency removal and prevention of environment pollution. 
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Introduction  

Chlorinated phenol derivatives are the most common 

organic pollutants (1) accumulated in water and soil due to the 

stability of the carbon-halogen bond (2, 3).The major sources 

of phenolic compounds are waste water of petrochemical 

refinery, herbicides and pesticides production industries, coal 

conversion and textile, pharmaceutical, paint and steel mills 

industries(4). Conventional techniques for phenolic 

compounds removal are catalytic and photocatalytic 

degradation, biodegradation, coagulation and flocculation, 

solvent extraction, wet air oxidation, reverse osmosis, resins 

and absorption (5-8). Ortho-chlorophenol (o-CP) is one of the 

most important 19 chlorophenol derivatives (9). This pollutant 

has become a major environmental concern due to its high 

toxicity and low environmental degradation. The maximum 

permitted concentration of o-CP in drinking water is 10μg/L 

(10). o-CP is in the high priority pollutants category and is 

highly soluble in aquatic environment (11). Advanced 
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oxidation process, as a green technology, has the advantage of 

removing contaminants from the environment and converting 

them to other organic compounds and finally into harmless 

inorganic species such as CO2 and H2O (12). Some 

researchers have proposed to use a primary absorber, as 

Photocatalyst substrate, in order to improve the efficiency of 

Photocatalyst system (13).Wasu et al (2013) reported that 

increase in absorption capacity can improve Photocatalytic 

activity (14). So that, mixture of an adsorbent with high 

adsorption efficiency and a catalyst can improve the removal 

efficiency in the presence of UV light (15). Burning coal 

produces several wastes that fly ash comprises 70 to 75 % of 

that (16). Fly ash is classified in industrial waste category and 

due to the presence of high levels of unburned carbon 

particles, fly ash is a potential alternative to activated carbon 

(17, 18). In most cases, just a small amount of fly ash is being 

recycled (approximately 20% to 30%) and 70-80% of the 

residual is eliminated through Landfill (19). Fly ash properties 

depend on several factors such as how fuel is converted to ash, 

the burning method, fuel chemical composition, temperature 

and time in combustion zone, the volume and pressure of 

entering air to furnace during burning and deposition of it (20). 

Malakootian et al., conducted several researches on removal 

of phenol derivatives from aqueous solutions and used Fly ash 

to remove organic compounds such as colors, surfactants, 

phenols and heavy metals from aqueous(21-28). Fly ash has 

also been used for absorption of NOx, SOx, mercury and 

organic compounds in air (8, 29). In some studies, the 

absorption method of fly ash (17) and also photocatalytic 

decomposition of UV/TiO2 are used for o-chlorophenols 

removal (12). But, the efficiency of mixture of modified fly 

ash and TiO2 was not investigated in o-CP removal. Zarand 

dual fuel power plants (coal and mazut) located in the 

northwest of Kerman, produce large amounts of fly ash at sites 

around the power plants. In the present study, the fly ash was 

activated with sulfuric acid in order to provide an adequate 

absorptive capacity and then was oxidized with potassium 

permanganate. Then, the mixture substrate of modified fly ash 

and TiO2 was used to enhance the efficiency of o-CP 

photocatalytic removal. Finally, the efficiency of this substrate 

was investigated in the removal of o-CP in real samples. 

 

Materials and Methods 

This experimental study was conducted in a laboratory-

scale and simultaneous on synthetic and real samples from 

September 2013 to March 2014 at the Environmental Health 

Engineering Research Center, Kerman University of Medical 

Sciences, Kerman, Iran. Raw fly ash was collected from the 

dust collector cyclone of Zarand power plant located in the 

northwest of Kerman. Since, 70% of the particles were in the 

range of 100 to 200 mesh, the particles at this scale were 

selected. Then, fly ash was washed with deionized distilled 

water at a ratio of 1:10 in order to remove impurities and 

solving water-soluble compounds. Finally, the washed fly ash 

(WFA) was obtained. 

 

1. Optimizing the effective parameters on acid washing 

of fly ash 

Over several consecutive stages, the effective parameters 

on acid washing of fly ash were investigated. So that at each 

stage, just the effect of one variable, while keeping other 

factors constant, was investigated. Thus, all parameters were 

optimized. Fly ash was acid washed through 4 steps of 

different concentrations of sulfuric acid (0.01, 0.1, 1, 1.8M), 

different ratios of acid to RFA (3: 1, 7: 1, 9: 1, 10: 1, 11: 1 

and13: 1), different times (1, 3, 5, 9 and 10h) and different 

temperatures (room temperature (29),70, 85, 100 and120 ° C) 

and converted to acidified fly ash (AFA). Samples were 

washed with distilled water and then ethanol until neutral pH 

and were dried in oven at 105C ° to achieve a constant weight 

(30). All samples were oxidized with potassium permanganate 

under stable conditions (30min, 28 °C, concentration; 10mM 

and ratio of fly ash to oxidizers: 5) (31). Thus the modified fly 

ash (MFA) was obtained. Then the MFA was mixed with 

TiO2 nanoparticles at constant ratio of 3:1(15). Photocatalytic 

removal efficiency of 100cc of o-CP solution (50mg/L) with 
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MFA/TiO2 substrates was determined in the presence of UV 

light. UV Lamp was used as light source (30W and 338 mw / 

m2) and the maximum wave length was 360nm. The light 

source was placed 20 cm higher than the sample surface. All 

parts of system were wrapped in aluminum foil to avoid light 

reflection. Chlorophenol absorption efficiency was also 

determined by acid washed fly ash, as absorbent, in order to 

assess the ability of fly ash which is activated by acid. 

 

2. Optimization of the effective parameters on oxidation 

of acid washed fly ash 

Effective factors on the oxidation process were optimized 

after determining the optimum values of effective factors on 

acid washed fly ash. AFA was oxidized in 4 steps:  

1) Different concentrations of potassium permanganate as 

oxidizer (0.2, 0.5, 1, 5, 10, 50 and 70mM) 

 2) Different ratios of oxidizer to AFA (3: 1, 5: 1, 8: 1, 11: 

1 and 13: 1) 

3) Different oxidizing temperatures (room temperature 

(28± 2), 50, 70 and 80°C) 

4) Different oxidizing times (0.5, 1, 2 and 3 hours). 

 To avoid precipitation of potassium permanganate on fly 

ash, after oxidation, it was separated from oxidizer solution by 

high-speed centrifuge (3500rpm). Then, it was washed by 

distilled water on stirrer at high speed (1500 rpm) for 4 hours. 

At the end, MFA and TiO2 nanoparticles with the ratio of 

3:1were used for removing o-CP in the presence of UV light. 

o-CP absorption efficiency was also determined by final 

modified fly ash, as absorbent, to evaluate the adsorption 

efficiency of o-CP by oxidation process of fly ash. 

 

 

 

 

 

3. Determining the optimum ratio of MFA to TiO2 

nanoparticles  

MFA was mixed at varying proportions with TiO2 (0: 4, 

3: 1, 1.5: 2.5, 2: 2, 2.5:1.5, 1:3, 4: 0) and photocatalytic 

removal efficiency of o-CP was measured at the presence of 

UV light. 

 

Photocatalytic tests 

100 ml solution of o-CP was contacted with varied pHs (2, 

3, 5, 7, 9 and11) and 0.5 g mixed substrate of MFA/TiO2 at 

room temperature (2 ± 29°C) to evaluate the effect of pH on 

removal efficiency. The removal efficiency of o-CP in 

different doses of mixed substrate (from 0.2 to 1g) and 

different initial concentrations of o-CP (from 20 to 250 mg/L) 

was determined. Then absorption kinetics and removal 

efficiency of real waste water produced in Zarand coal 

washing plant (located in Kerman) was measured. TiO2, 

H2SO4, KMnO4, HCL, NaOH and o-CP were prepared from 

Merck Company. The remaining amount of o-CP was read by 

a spectrophotometer (model UV-1800 SHIMADZU) at wave 

length of 274nm. Data analysis was performed by using SPSS 

software version 20. 

 

Result and Discussion 

At the beginning, the EC of washing solution of fly ash 

was 0.0023 μs/ cm and after 48 hours washing, it increased to 

0.00407 μs/ cm. At initiation of the experiment, TDS of 

washing solution was 0.08g/L and after 48 hours washing, it 

increased to 1.71g/L. This indicates the dissolution of water-

soluble compounds in fly ash. The pH of washing solution at 

the beginning and end of washing for 48hours, showed no 

change and its value was equal to 2.6. SEM images of the 

WFA, AFA and MFA have been shown in Figures 1, 2 and 3, 

respectively. 
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Comparison of Figures 1, 2 and 3 shows that the porosity 

of modified fly ash surface (MFA) has increased, in 

comparison with WFA and available veins are larger. Tahir et 

al in Pakistan reported improvement in color removal 

efficiency due to the formation of the new modified surface 

and surface area increase of absorption in fly ash after washing 

with sulfuric acid and formaldehyde (32). Zhang et al in China 

performed a study to confirm improvement of the 

physicochemical properties of AFA in comparison with RFA 

(30). The results of the present study are compatible with the 

results of the mentioned studies. 

Weight percent of elements and compounds in WFA, 

AFA and mixture of MFA / TiO2 samples have been given in 

Table 1. 

 

Table 1. Weight percent of elements and compounds in washed fly ash (WFA) samples, acidified fly ash (AFA) and mixture of modified fly ash with 

titanium dioxide (MFA / TiO2) 

TitaniumVanadiumIronOxygenSulfurCarbonTiO2Fe2O3V2O5SO3CO2Adsorbent type

0 2.09 1.32 10.91 7.73 77.94 0 0.61 1.2 6.22 91.9 MFA/TiO2 

0 0 0 6.68 6.8 86.52 0 0 0 5.08 94.92 WFA 

27.12 0 0 18.14 5.43 44.15 20.51 0 0 6.15 73.34 AFA 

 

Weight percent of carbon increased after acid activation 

process and vanadium (V) was also removed from fly ash. 

Increase of the percentage of carbon after FA acid washing, 

confirmed the improvement of the absorption capacity of 

absorbent. The results of Vanadium removal, after FA acid 

washing, is compatible with the results of a study in Japan 

during 2010 and 2011 by Kashiwakura et al. that have 

reported successful removal of dangerous substances such as 

arsenic and selenium from FA during the acid washing 

process (33, 34). 

 

 

The effect of acid washing of fly ash on o-CP absorption 

efficiency by MFA / TiO2 

Changes of photocatalytic removal efficiency of o-CP by 

mixture substrate of MFA/TiO2 with changing effective 

factors on acid washing of fly ash (concentrations of acid, 

ratios of fly ash to acid, times and temperatures of acid 

washing) have been presented in Figures 4, 5, 6 and 7 

respectively. 

Figure 3. MFA SEM image Figure 1. WFA SEM image Figure 2. AFA SEM image 
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Figure 4. photocatalytic removal efficiency of o-CP by MFA/TiO2 based 

on acid concentration  

While the fly ash was oxidized directly and without acid 

washing, the efficiency of photocatalytic decomposition of o-

CP with MFA/TiO2 substrate was %70. On the other hand, 

the efficiency of the photocatalytic decomposition of o-CP by 

MFA / TiO2 substrate increased from73.8% to respectively 

83.29% and 83.4% by increasing the acid concentration from 

0.01 to 1.8 and 2 molar. Therefore, 1.8M was chosen as 

optimum acid concentration in fly ash acid washing process. 

Statistically, o-CP removal efficiency had a significant 

relationship with acid concentration (P= 0.002). 

 

 

Figure 5. photocatalytic removal efficiency of o-CP by MFA / TiO2 

based on the ratio of acid solution to RFA in acid washing process 

At first, by increasing the ratio of acid to RFA up to 7, the 

photocatalytic decomposition efficiency of o-CP with 

MFA/TiO2 substrate increased and then remained stable. 

Therefore, the ratio = 7 were chosen as the optimum ratio. 

There was no significant relationship between o-CP removal 

efficiency and the ratio of acid to fly ash (P= 0.071). 

 

 
 

 

 

 

Increasing the time and temperature of fly ash acid 

washing caused improvement of photocatalytic removal 

efficiency of o-CP by MFA/TiO2 substrate. But, there was no 

significant difference in removal efficiencies. Therefore, 5 

hours and 28 °C (room temperature) were chosen as the 

optimal values  (Figures 6 and 7). 

 

O-CP removal by adsorption process on acid activated fly 

ash  

Activated fly ash by acid was used as an adsorbent for o-

CP removal and the removal efficiency was equal to 83.3%. 

Increase of acid concentration, temperature and time in the 

process of fly ash acid washing, due to increasing dissolution 

of fly ash impurities, porosity and surface area of the 
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Figure 6. Photocatalytic removal efficiency of o-CP by MFA/TiO2 

based on different acid washing times  

 

Figure 7. Photocatalytic removal efficiency of o-CP by MFA/TiO2 

based on different temperatures of fly ash acid washing 
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absorbent, is resulted in the improvement of absorption 

efficiency (29, 35). The obtained results correspond with 

Wang et al report in Australia (36). Panitchakarn et al in 

Pakistan observed that the purity percentage of fly ash initially 

increased with increasing acid concentration, but finally acid 

concentration did not have any effect on purification of 

adsorbent. Also the ratio of acid to fly ash has no significant 

effect on fly ash purification. The researchers observed that 

with increasing time and temperature of fly ash acid washing, 

the percentage of absorbent impurities decreased and this 

situation eventually led to the increase of absorption capacity 

(37). As it is seen, the results of the mentioned study are 

compatible with the findings of the present study. 

 

The role of Fly ash oxidation in photocatalytic removal 

efficiency of o-CP by MFA / TiO2 

Changes of photocatalytic removal efficiency of o-CP by 

MFA/TiO2 with changing the effective factors on oxidation of 

fly ash (ratio of oxidant to fly ash, oxidant concentration, 

temperature and time of fly ash oxidation) have been 

presented in Figures 8, 9, 10 and 11 respectively. 

 

Figure 8. Photocatalytic removal efficiency of o-CP by MFA/TiO2 based 
on different ratios of oxidant to AFA in fly ash oxidation process 

With increasing the ratio of oxidants to the AFA, the 

photocatalytic removal efficiency of o-CP by MFA/TiO2 

decreased. Thus the ratio of 4:1 for oxidants to AFA was 

selected. Removal efficiency of o-CP by AFA/TiO2 was less 

(88.3%) than that of MFA/TiO2. 

 

 

Figure 9. photocatalytic removal efficiency of o-CP by mixture of 

MFA/TiO2 based on different oxidant concentration in fly ash oxidation 

process 

Increase of oxidants concentrations in modification of fly 

ash reduced o-CP removal efficiency and the best removal 

efficiency was achieved when potassium permanganate 

concentration was 0.5 mM. Statistically, there was a 

significant relationship between potassium permanganate 

concentration and removal efficiency (P =0.004). 
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Increase of oxidation time and temperature of oxidizing process improved the decomposition efficiency of o-CP at the presence 

of UV light and the maximum removal efficiency was 

related to the substrate that was oxidized at 80° C for 1 hour. 

 

O-CP adsorption by modified fly ash 

The absorbent of final modified fly ash was used alone for 

o-CP removal and the removal efficiency was 93.27%. 

Improvement of the absorption efficiency in oxidized 

absorbent is due to carbon oxidation of fly ash by MnO4-. So 

that adsorption ability of oxidized carbon is higher than that of 

the raw carbon. Also, the observed absorption increase in 

oxidized absorbent is due to the presence of C = O double 

bonds in oxidized fly ash and the π-π absorption interaction 

between absorbent and pollutants (38). Jeon et al, in North 

Korea, reported that the oxidation process of acid alginate to 

acid arginate carboxyl by potassium permanganate leads to the 

increase of Carboxyl groups in oxidized samples compared to 

non-oxides samples; it means the carbon type is changed (39) 

which is compatible with the present results. The observed 

reduction in absorption efficiency with increasing the oxidizer 

concentration is due to the deposition of potassium 

permanganate on surface of the adsorbent, so that the 

absorption capability decreased by filling empty spaces and 

porosity reduction on fly ash surface.  

 

Optimum ratio of MFA to TiO2: 

O-CP removal efficiency at different ratios of MFA:TiO2 

has been presented in Figure 12. 

 

 

Figure 12. Photocatalytic removal efficiency of o-CP by changing the ratio of MFA to TiO2 (Room temperature, catalyst dose = 0.3g, o-CP 

concentration= 50mg / L) 
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Figure 10. Photocatalytic removal efficiency of o-CP by MFA / TiO2 

based on different oxidation times  

Figure 11. Photocatalytic removal efficiency of o-CP by MFA/TiO2 based 

on different temperatures of fly ash oxidation  
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MFA and TiO2, each in isolation, had a lower efficiency 

than MFA/TiO2 mixture and the best efficiency was in the 

ratio of 3:1 of MFA/TiO2.The Photocatalytic processes are 

chemical reactions that occur on the Photocatalyst surface. 

The reaction rate depends on the contact surface of catalyst 

and light. The rate of reaction will increase in the case of 

analyte distribution over a greater surface area (40,41). 

Obviously, in the first phase, when the absorption process 

occurs, the photocatalytic process is more efficient because 

pollutant is very close to Photocatalyst. This occurs when 

TiO2 is placed in fly ash (fly ash acts as an absorber). In other 

words, the efficiency changes depending on the type of fly ash 

and also the type of reform process (42). In the present study, 

reform process of fly ash led to the improvement of the 

absorption efficiency of fly ash. This action increased the 

efficiency of photocatalytic process. It is expected that TiO2 

compounds located on fly ash surface have similar function to 

their hosts. During this process, both substrates are loaded 

with pollutant and adsorption process occurs before 

photocatalytic process (43). During o-CP photocatalytic 

removal, the adverse produced compounds are eliminated by 

photocatalytic decomposition (12). Visa et al have suggested 

that TiO2/MFA mixed substrate can be used as a valid option 

to remove contaminants. Also, removal efficiency at the 

presence of UV light is more than absorption process in the 

absence of light (15). The mechanism of catalysis by mixture 

of TiO2/MFA consists three phases: pollutant absorption on 

surface of TiO2 /FA, optical dispersion of pollutant on the 

surface and the final product desorption from the surface of 

TiO2. The results showed that pollutant is absorbed on the fly 

ash, selectively when fly ash is loaded with TiO2 and leads to 

more pollution in TiO2 surrounding. Then the absorbed 

pollutant by diffusion process will transfer to catalyst and 

decomposition will happen (44). An analyte desorption from 

the substrate surface by methanol organic solvents and then 

measuring the concentration of o-CP confirmed that 

Photocatalytic reaction leads to loss o-CP completely and 

convert to an eco-friendly species. 

 

Effect of pH and mixed substrate dose on o-CP removal 

efficiency: 

The photocatalyst removal efficiency of o-CP by 

MFA/TiO2 based on pH and substrate dose is given in 

Figures 13 and 14. 

 

 
 

 

 

Removal efficiency increased by decreasing the PH, so 

that the maximum removal efficiency was observed at pH = 2. 

The presence of H+ ion at acidic pH leads to the formation of 

H0 radicals. Also, HO20 radicals that are formed from 

dissolved oxygen are finally converted to OH0 radicals and 

the efficiency will increase consequently. At alkaline 

environment the available o-CP is as an anion that is more 

reactive and reacts with available radicals easily. For this 
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reason, o-CP degradation at alkaline environments is more 

than that in neutral environment. However, excessive increase 

of hydroxyl concentration could be a hindrance for light 

penetration to TiO2 surface. In addition, high pH creates a 

favorable context to form carbonate ions that are the effective 

absorbents of OH-ions and can reduce the decomposition 

speed. The results of this study are consistent with the results 

of the study conducted by(45).  

Mixed substrate dose of 0.6g was selected as the optimal 

dose of mixed substrate. Statistically, there is a significant 

correlation between substrate dose and removal efficiency (P 

=0.0023). Efficiency reduction following substrate dose 

increase is due to the increase of the solution turbidity, 

reduction of light penetration rate and increase of the pass way 

by optical photons (46). 

 

Effect of irradiation Time 

Increase of the irradiation time motivated catalyst particles 

increase too. This led to the increase of the number of OH 

radicals and positive holes and consequently the efficiency of 

the Photocatalytic process increased. The obtained findings 

are consistent with the results that have been previously 

reported by Shirzad Siboni et al and Parasta et al (47, 48).  

Comparison of R2 at first and second order kinetics of o-

CP removal by MFA/TiO2 showed that removal process 

follows the second order kinetics and also the constant 

reaction rate was equal to 0.178. Decreasing the initial 

concentration of O-CP and increasing time leads to the 

increase of removal efficiency. With increasing initial 

concentrations of pollutants, due to sticking to the surface of 

the solid catalyst, the overall surface of excitation was 

reduced. Also, production of intermediate products which are 

more reactive than the primary pollutants, generates a 

competition in reaction with the radicals and leads to the 

reduction of the removal efficiency (45, 46). 

 

Conclusion 

Cost-effective modification process carried out on the fly 

ash improves the adsorption efficiency. This increases the 

efficiency of photocatalytic process. So that, we can reach to a 

suitable substrate for waste water treatment in the industrial 

scale and MFA/TiO2 has a higher efficiency than MFA and 

TiO2/UV in isolation. This mixed substrate can be resulted in 

photocatalytic removal efficiency of 88.4% in the real waste 

water. Due to the cost-effectiveness and availability of fly ash 

and simple modification process, this method is recommended 

and can be applied extensively. 
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