Curcumin Modulates the Level of IL-17 and IL-10 Cytokines in Two Models of Experimental Liver Injury in Male Rats

Document Type: Original Article

Authors

1 Post-graduate student, Department of Immunology, Kerman University of Medical Sciences, Kerman, Iran

2 Post-graduate student, Department of Physiology & Pharmacology and Physiology Research Center, Institute of Basic and Clinical Physiology Sciences , Kerman University of Medical Sciences, Kerman, Iran

3 Post-graduate student, Department of Virology, Kerman University of Medical Sciences, Kerman, Iran

4 Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology & Pharmacology, Kerman University of Medical Sciences, Kerman, Iran

5 Gastrology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology & Pharmacology, Kerman University of Medical Sciences, Kerman, Iran

6 Post-graduate student, Department of Health, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Introduction: Curcumin, a natural antioxidant, has anti-inflammatory and protective effect on a large number of diseases like cancers and hepatic disorders in oxidative stress conditions by collecting free oxygen radicals and increasing intracellular glutathione. The aim of this study was to determine the effects of curcumin on the level of IL-17 and IL-10 cytokines in intrahepatic and extrahepatic liver injuries
Methods: A total of 72 male Wistar rats were randomly divided into two (A, B) categories, each of which was divided into 4 groups. A: One group as a control-sham group received distilled water as an acetaminophen vehicle and the other three groups received acetaminophen (500mg/kg IP). The third group received curcumin, and the fourth group was administrated curcumin vehicle. B: one group underwent Bile Duct Ligation (BDL), and another group received curcumin by gavage for seven days. The third group received distilled water as a curcumin vehicle and the fourth group was considered the sham group. Animals were sacrificed 48 hours after administration of acetaminophen under anesthesia with ketamine + xylazine. After that, liver tissue samples were taken for laboratory tests. Cytokines were measured by ELISA method.
Results: Levels of IL-17 and IL-10 in the liver tissue in groups A and BDL increased significantly, and in the Curcumin (CMN) group, decreased significantly in both in- and out-liver injury. Also, the body weight in the curcumin-treated groups showed a significant increase both in intrahepatic and extrahepatic injuries.
Conclusion: Our data suggest that curcumin undermines inflammation and damage to the inside and outside of the liver, but these findings need to be further investigated.
 

Keywords


1.       Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. N Engl J Med 1998; 339 (17):1217-27.

2.       Wagner M, Zollner G, Trauner M. New molecular insights into the mechanisms of cholestasis. J Hepatol 2009; 51 (3):565-80.

3.       Woolbright BL, Antoine DJ, Jenkins RE, Bajt ML, Park BK, Jaeschke H. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice. Toxicol Appl Pharmacol 2013; 273 (3):524-31.

4.       Chazouillères O. The variant forms of cholestatic diseases involving small bile ducts in adults. Journal of Hepatology 2000; 32:16-8.

5.       Poupon R, Chazouilleres O, Poupon RE. Chronic cholestatic diseases. Journal of Hepatology 2000; 32 (1 Suppl):129-40.

6.       Yang H, Antoine DJ, Andersson U, Tracey KJ. The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 2013; 93 (6):865-73.

7.       Paumgartner G, Pusl T. Medical treatment of cholestatic liver disease. Clin Liver Dis 2008; 12 (1):53-80.

8.       Fickert P, Wagner M, Marschall HU, Fuchsbichler A, Zollner G, Tsybrovskyy O, et al. 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 2006; 130 (2):465-81.

9.       Pares A, Caballeria L, Rodes J. Excellent long-term survival in patients with primary biliary cirrhosis and biochemical response to ursodeoxycholic Acid. Gastroenterology 2006; 130 (3):715-20.

10.     Corpechot C, Abenavoli L, Rabahi N, Chretien Y, Andreani T, Johanet C, et al. Biochemical response to ursodeoxycholic acid and long-term prognosis in primary biliary cirrhosis. Hepatology 2008; 48 (3):871-7.

11.     Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, et al. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 2003; 112 (11):1678-87.

12.     Trauner M, Wagner M, Fickert P, Zollner G. Molecular regulation of hepatobiliary transport systems: clinical implications for understanding and treating cholestasis. J Clin Gastroenterol 2005; 39 (4 Suppl 2):S111-24.

13.     Huang L, Zhao A, Lew JL, Zhang T, Hrywna Y, Thompson JR, et al. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem 2003; 278 (51):51085-90.

14.     Moschetta A, Bookout AL, Mangelsdorf DJ. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat Med 2004; 10 (12):1352-8.

15.     Sarbolouki MN, Alizadeh AM, Khaniki M, Azizian S, Mohaghgheghi MA. Protective effect of dendrosomal curcumin combination on colon cancer in rat. Tehran Univ Med J 2012; 69 (11):678-85. In Persian

16.     Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol 2008; 75 (4):787-809.

17.     Miriyala S, Panchatcharam M, Rengarajulu P. Cardioprotective effects of curcumin. Adv Exp Med Biol 2007; 595:359-77.

18.     Shen SQ, Zhang Y, Xiang JJ, Xiong CL. Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World J Gastroenterol 2007; 13 (13):1953-61.

19. Sharma RA, Ireson CR, Verschoyle RD, Hill KA, Williams ML, Leuratti C, et al. Effects of dietary curcumin on glutathione S-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa: relationship with drug levels. Clin Cancer Res 2001; 7 (5):1452-8.

20.     Rahimi HR, Kazemi Oskuee R. Curcumin from traditional Iranian Medicine to molecular Medicine. Razavi Int J Med 2014; 2 (2):e19982.

21.     Bruck R, Ashkenazi M, Weiss S, Goldiner I, Shapiro H, Aeed H, et al. Prevention of liver cirrhosis in rats by curcumin. Liver Int 2007; 27 (3):373-83.

22.     Kulkarni S, Dhir A, Akula KK. Potentials of curcumin as an antidepressant. Scientific World Journal 2009; 9:1233-41.

23.     Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 2008; 201 (3):435-42.

24.     Azza M, El-Wakf M, Elhabiby M, El-kholy E. Use of tumeric and curcumin to alleviate adverse reproductive outcomes of water: Nitrate pollution in male rats. Nat & Sci 2011; 9 (7):229-39.

25.     Lee WC, Kim JK, Kang JW, Oh WY, Jung JY, Kim YS, et al. Palmatine attenuates D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure in mice. Food Chem Toxicol 2010; 48 (1):222-8.

26.     Seruga B, Zhang H, Bernstein LJ, Tannock IF. Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 2008; 8 (11):887-99.

27.     Burger D, Dayer JM. Cytokines, acute-phase proteins, and hormones: IL-1 and TNF-alpha production in contact-mediated activation of monocytes by T lymphocytes. Ann N Y Acad Sci 2002; 966:464-73.

28.     Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75 (2):263-74.

29.     Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19:683-765.

30.     Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 2004; 22:929-79.

31.     Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol 2008; 180 (9):5771-7.

32.     Couper KN, Blount DG, Wilson MS, Hafalla JC, Belkaid Y, Kamanaka M, et al. IL-10 from CD4+CD25−Foxp3−CD127− adaptive regulatory T cells modulates parasite clearance and pathology during malaria infection. PLoS Pathog 2008; 4 (2): e1000004.

33.     de Waal Malefyt R, Yssel H, de Vries JE. Direct effects of IL-10 on subsets of human CD4+ T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation. J Immunol 1993; 150 (11):4754-65.

34.     Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 1991; 146 (10):3444-51.

35.     Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling. Cytokine 2013; 64 (2):477-85.

36.     Zambrano-Zaragoza JF, Romo-Martinez EJ, Duran-Avelar Mde J, Garcia-Magallanes N, Vibanco-Perez N. Th17 cells in autoimmune and infectious diseases. Int J Inflam 2014; 2014:651503.

37.     Wang L, Chen S, Xu K. IL-17 expression is correlated with hepatitis Brelated liver diseases and fibrosis. Int J Mol Med 2011; 27 (3):385-92.

38.     Ambrosino G, Naso A, Feltracco P, Carraro P, Basso SM, Varotto S, et al. Cytokines and liver failure: modification of TNF- and IL-6 in patients with acute on chronic liver decompensation treated with Molecular Adsorbent Recycling System (MARS). Acta Biomed 2003; 74 Suppl 2:7-9.

39.     Lin CC, Hsu YF, Lin TC, Hsu HY. Antioxidant and hepatoprotective effects of punicalagin and punicalin on acetaminophen-induced liver damage in rats. Phytother Res 2001; 15 (3):206-12.

40.     Garcia-Nino WR, Pedraza-Chaverri J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201.

41.     Yu JY, Ha JY, Kim KM, Jung YS, Jung JC, Oh S. Anti-Inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules 2015; 20 (7):13041-54.

42.     Balasubramaniyan V, Wright G, Sharma V, Davies NA, Sharifi Y, Habtesion A, et al. Ammonia reduction with ornithine phenylacetate restores brain eNOS activity via the DDAH-ADMA pathway in bile duct-ligated cirrhotic rats. Am J Physiol Gastrointest Liver Physiol 2012; 302 (1):G145-52.

43.     Olteanu D, Filip A, Muresan A, Nagy A, Tabaran F, Moldovan R, et al. The effects of chitosan and low dose dexamethasone on extrahepatic cholestasis after bile duct ligation in Wistar rats. Acta Physiol Hung 2012; 99 (1):61-73.

44.     Bhattacharya SK, Sen AP, Ghosal S. Effects of shilajit on biogenic free radicals. Phytotherapy Research 1995; 9 (1):56-9.

45.     Morovvati H, Najafzadeh H, Azizian H. Evaluation of effect of curcumin on changes of liver in adrenalectomised rats. Journal of Babol University of Medical Sciences 2013; 15 (3):59-64. In Persian

46.     Yousef MI, El-Demerdash FM, Radwan FM. Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin. Food Chem Toxicol 2008; 46 (11):3506-11.

47. Xu SC, Chen YB, Lin H, Pi HF, Zhang NX, Zhao CC, et al. Damage to mtDNA in liver injury of patients with extrahepatic cholestasis: the protective effects of mitochondrial transcription factor A. Free Radic Biol Med 2012; 52 (9):1543-51.

48.     Nguyen P, Leray V, Diez M, Serisier S, Le Bloc'h J, Siliart B, et al. Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl) 2008; 92 (3):272-83.

49.     Soliman ME. Evaluation of the possible protective role of folic acid on the liver toxicity ınduced experimentally by methotrexate in adult male albino rats. Egypt J Histol 2009; 32 (1):118-28.

50.     Han JM, Kim HG, Choi MK, Lee JS, Park HJ, Wang JH, et al. Aqueous extract of Artemisia iwayomogi Kitamura attenuates cholestatic liver fibrosis in a rat model of bile duct ligation. Food Chem Toxicol 2012; 50 (10):3505-13.

51.     Aksu B, Umit H, Kanter M, Guzel A, Aktas C, Civelek S, et al. Effects of methylene blue in reducing cholestatic oxidative stress and hepatic damage after bile-duct ligation in rats. Acta Histochem 2010; 112 (3):259-69.

52.     Bassiouny AR, Zaky A, Kandeel KM. Alteration of AP-endonuclease1 expression in curcumin-treated fibrotic rats. Ann Hepatol 2011; 10 (4):516-30.

53.     Pan PH, Lin SY, Ou YC, Chen WY, Chuang YH, Yen YJ, et al. Stearic acid attenuates cholestasis-induced liver injury. Biochem Biophys Res Commun 2010; 391 (3):1537-42.

54.     Reyes-Gordillo K, Segovia J, Shibayama M, Tsutsumi V, Vergara P, Moreno MG, et al. Curcumin prevents and reverses cirrhosis induced by bile duct obstruction or CCl4 in rats: role of TGF-beta modulation and oxidative stress. Fundam Clin Pharmacol 2008; 22 (4):417-27.

55.     Han JM, Kim HG, Choi MK, Lee JS, Lee JS, Wang JH, et al. Artemisia capillaris extract protects against bile duct ligation-induced liver fibrosis in rats. Exp Toxicol Pathol 2013; 65 (6):837-44.

56.     Copple BL, Jaeschke H, Klaassen CD. Oxidative stress and the pathogenesis of cholestasis. Semin Liver Dis 2010; 30 (2):195-204.

57.     Zviarynski IU, Zavodnik LB. The effect of folic acid on the drug metabolizing liver function in man with viral hepatitis. Exp Toxicol Pathol 1999; 51 (4-5):455-7.

58.     Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schaffer AA, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 2007; 39 (1):86-92.

59.     Hesse M, Piccirillo CA, Belkaid Y, Prufer J, Mentink-Kane M, Leusink M, et al. The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J Immunol 2004; 172 (5):3157-66.

60. Groux H, Cottrez F, Rouleau M, Mauze S, Antonenko S, Hurst S, et al. A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J Immunol 1999; 162 (3):1723-9.

61. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol 2002; 2 (2):116-26.

62. Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 2004; 4 (5):336-47.

63.     Nelson DR, Tu Z, Soldevila-Pico C, Abdelmalek M, Zhu H, Xu YL, et al. Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology 2003; 38 (4):859-68.

64.     Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002; 420 (6915):502-7.

65.     Romagnani S. Human Th17 cells. Arthritis Res Ther 2008; 10 (2):206.

66.     Gaffen SL. An overview of IL-17 function and signaling. Cytokine 2008; 43 (3):402-7.

67.     Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev 2008; 223:87-113.

68.     Garrett-Sinha LA, John S, Gaffen SL. IL-17 and the Th17 lineage in systemic lupus erythematosus. Curr Opin Rheumatol 2008; 20 (5):519-25.

69.     Maloy KJ. The Interleukin-23/Interleukin-17 axis in intestinal inflammation. J Intern Med 2008; 263 (6):584-90.

70.     Song C, Luo L, Lei Z, Li B, Liang Z, Liu G, et al. IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J Immunol 2008; 181 (9):6117-24.

71.     Rutitzky LI, Lopes da Rosa JR, Stadecker MJ. Severe CD4 T cell-mediated immunopathology in murine schistosomiasis is dependent on IL-12p40 and correlates with high levels of IL-17. J Immunol 2005; 175 (6):3920-6.

72.     Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 2007; 37 (10):2695-706.

73.     Zhang L, Cheng Y, Du X, Chen S, Feng X, Gao Y, et al. Swertianlarin, an herbal agent derived from swertia mussotii franch, attenuates liver injury, inflammation, and cholestasis in common bile duct-ligated rats. Evid Based Complement Alternat Med 2015; 2015: 948376.

74.     Liu TZ, Lee KT, Chern CL, Cheng JT, Stern A, Tsai LY. Free radical-triggered hepatic injury of experimental obstructive jaundice of rats involves overproduction of proinflammatory cytokines and enhanced activation of nuclear factor kappaB. Ann Clin Lab Sci 2001; 31 (4):383-90.

75.     Geier A, Dietrich CG, Trauner M, Gartung C. Extrahepatic cholestasis downregulates Oatp1 by TNF-alpha signalling without affecting Oatp2 and Oatp4 expression and sodium-independent bile salt uptake in rat liver  Liver Int 2007; 27 (8):1056-65.