High Prevalence of CTXM-15 Type Extended-Spectrum Beta-Lactamase Among Clinical Isolates of Klebsiella Pneumoniae

Document Type: Original Article


1 MSC of microbiology, Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

2 Assistant Professor, Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran


Background: Production of β–lactamases by enterobacteriacea, especially Klebsiella pneumoniae, is one of the emerging health problems in the world. The purpose of this study was to assess the frequency of blaCTX-M15 gene in K. pneumoniae isolates and determine the molecular diversity of CTXM producing isolates.
Methods: In this descriptive cross-sectional study, 100 K. pneumoniae strains were tested for susceptibility to cephalosporins category by using disk diffusion method and the prevalence of blaCTX-M-1, blaCTX-M-2, blaCTX-M-9 and blaCTX-M-15 genesin these isolates were determined by PCR method. Eventually, a number of isolates were sequenced and typed using single locus sequence typing (SLST) of blaCTX-M group1 gene. The phylogenetic relatedness of all CTX-M producing isolates was determined using enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR).
Results:The rates of resistance to cephalosporins category were in the following order: cefepime(57%), ceftazidime (54%), cefotaxime (36%), cefoxitine (32%), and ceftriaxone (31%). Of all 100 K. pneumoniae isolates, 31 were harboring CTX-M genes, and the blaCTX-M-15 (77.5%) was the most common of the genes investigated. The results of SLST showed that all of the sequenced isolates were divided into two groups. ERIC-PCR method represented ten different genotypes in CTX-M positive isolates.
Conclusion: The results of this study showed that one of the most important reasons for resistance to cephalosporins is the presence of blaCTX-M genes. In addition, there was a high genetic variation among blaCTX-M genes positive isolates.


  1. Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 2014; 9(9):1071-81.
  2. McDanel J, Schweizer M, Crabb V, Nelson R, Samore M, Khader K, et al. Incidence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella infections in the United States: a systematic literature review. Infect Control Hosp Epidemiol 2017; 38(10):1209-15.
  3. Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8(3):159-66.
  4. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 2005; 18(4):657-86.
  5. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Front Microbiol 2012; 3:110.
  6. Tansarli GS, Poulikakos P, Kapaskelis A, Falagas ME. Proportion of extended-spectrum β-lactamase (ESBL)-producing isolates among Enterobacteriaceae in Africa: evaluation of the evidence—systematic review. J Antimicrob Chemother 2014; 69(5):1177-84.
  7. Liang C, Xing B, Yang X, Fu Y, Feng Y, Zhang Y. Molecular epidemiology of aminoglycosides resistance on Klebsiella pneumoniae in a hospital in China. Int J Clin Exp Med 2015; 8(1):1381-5.
  8. Hakimi Alni R, Ghobadi N, Najafi Asl M, Sharifi A. Genotyping of Escherichia coli isolated from human and water samples using ERIC-PCR method in Hamadan city. Journal of Birjand University of Medical Sciences 2018; 25(4): 297-306. [In Persian].
  9. Ribeiro Junior JC, Tamanini R, Soares BF, de Oliveira AM, de Godoi Silva F, da Silva FF, et al. Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk. Semina: Ciências Agrárias, Londrina 2016; 37(5):3069-78.
  10. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Third Informational Supplement. USA: CLSI; 2015.
  11. Monstein HJ, Ostholm-Balkhed A, Nilsson MV, Nilsson M, Dornbusch K, Nilsson LE. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 2007; 115(12):1400-8.
  12. Guessennd N, Bremont S, Gbonon V, Kacou-Ndouba A, Ekaza E, Lambert T, et al. Qnr-type quinolone resistance in extended-spectrum beta-lactamase producing enterobacteria in Abidjan, Ivory Coast. Pathol Biol (Paris) 2008; 56(7-8):439-46.
  13. Muzaheed, Doi Y, Adams-Haduch JM, Endimiani A, Sidjabat HE, Gaddad SM, et al. High prevalence of CTX-M-15-producing Klebsiella pneumoniae among inpatients and outpatients with urinary tract infection in Southern India. J Antimicrob Chemother 2008; 61(6):1393-4.
  14. Wasfi R, Elkhatib WF, Ashour HM. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci Rep 2016; 6:38929.
  15. Alni RH, Mohammadzadeh A, Mahmoodi P, Alikhani MY. RAPD-PCR analysis of Staphylococcus aureus strains isolated from different sources. Comp Clin Path 2017; 26(4):823-30.
  16. Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 1988; 26(11):2465-6.
  17. Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol 2010; 300(6):371-9.
  18. Amin A, Ghumro PB, Hussain S, Hameed A. Prevalence of antibiotic resistance among clinical isolates of Klebsiella pneumoniae isolated from a Tertiary Care Hospital in Pakistan. Malaysian Journal of Microbiology 2009; 5(2):81-6.
  19. Ahmed OI, El-Hady SA, Ahmed TM, Ahmed IZ. Detection of bla SHV and bla CTX-M genes in ESBL producing Klebsiella pneumoniae isolated from Egyptian patients with suspected nosocomial infections. Egyptian Journal of Medical Human Genetics 2013; 14(3):277-83.
  20. Croft AC, D'Antoni AV, Terzulli SL. Update on the antibacterial resistance crisis. Med Sci Monit 2007; 13(6):RA103-18.
  21. Nakhaei Moghaddam M, Zolfaghari MR, Tavakoli‐Hoseini N. CTX-M-15 Type β-lactamases from clinical isolates of Escherichia coli by polymerase Chain reaction and DNA sequencing. Zahedan J Res Med Sci 2017; 19(3):e5814.
  22. Ahanjan M, Naderi F, Solimanii A. Prevalence of beta-lactamases genes and antibiotic resistance pattern of Klebsiella pneumoniae isolated from teaching hospitals, Sari, Iran, 2014. Journal of Mazandaran University of Medical Sciences 2017; 27(149):79-87. [In Persian].
  23. Maleki N, Tahanasab Z, Mobasherizadeh S, Rezaei A, Faghri J. Prevalence of CTX-M and TEM β-lactamases in Klebsiella pneumoniae isolates from patients with urinary tract Infection, Al-Zahra Hospital, Isfahan, Iran. Adv Biomed Res 2018; 7:10.
  24. Torshizi R, Zamanzad B, Mokhtareyan K, Karimi A. Determination of CTX-M genes in enterobacteriaceae producing extended-spectrum beta-lactamase using PCR method. Journal of Shahrekord University of Medical Sciences 2011;13(3):9-17. [In Persian].
  25. Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 2014; 6:25-64.
  26. Seifi K, Kazemian H, Heidari H, Rezagholizadeh F, Saee Y, Shirvani F, et al. Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur J Microbiol 2016; 9(1):e30682.
  27. Chmielewski R, Wieliczko A, Kuczkowski M, Mazurkiewicz M, Ugorski M. Comparison of ITS Profiling, REP‐and ERIC‐PCR of Salmonella enteritidis isolates from Poland. J Vet Med B Infect Dis Vet Public Health 2002; 49(4):163-8.
  28. Knetsch CW, Lawley TD, Hensgens MP, Corver J, Wilcox MW, Kuijper EJ. Current application and future perspectives of molecular typing methods to study Clostridium difficile infections. Euro Surveill 2013; 18(4):20381.