The Retinal Nerve Fiber Layer Thickness is Related to Severity of Parkinson’s Disease

Kaveh Shafiei, M.D. 1, Farhad Iranmanesh, M.D. 2, Ali Sharifi M.D. 3, Nasrin Saliminiya M.D. 4, Tania Dehesh, Ph.D. 5

1- Assistant Professor of Neurology, Neurology research Centre, Kerman University of Medical Sciences, Kerman, Iran
2- Professor of Neurology, Neurology Research Centre, Kerman University of Medical Sciences, Kerman, Iran
3- Associate Professor of Ophthalmology, Ophthalmology Department, Kerman University of Medical Sciences, Kerman, Iran
4- Neurologist, Neurology Research Centre, Kerman University of Medical Sciences, Kerman, Iran
5- Assistant Professor of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran

Received: 10 June, 2019 Accepted: 14 December, 2019

ARTICLE INFO

Article type: Original Article

Keywords: Parkinson’s disease
Optical coherence tomography
Retinal nerve fiber layer thickness
Disease severity
Unified Parkinson's disease rating scale

Abstract

Introduction: We investigated correlation between the retinal nerve fiber layer (RNFL) thickness and the severity of Parkinson's disease (PD).

Methods: In this study, the RNFL thickness of 23 patients with Parkinson’s disease (PD) was compared to normal controls (NCs). PD severity was assessed by the MDS-UPDRS (movement disorder society Unified Parkinson Disease Rating Scale) rating scale thoroughly in all parts. RNFL is measured by Ocular Coherent tomography (OCT). Scatter plots were used to evaluate the relationship between disease severity and retinal thickness.

Results: The findings of the study demonstrated that patients with PD had a significantly thinner average RNFL thickness compared with controls (P=0.035). Superior and inferior retinal quadrants were thinnest in PD compared with the healthy group (P=0.021 and P=0.045, respectively). The MDS-UPDRS had a significant reverse correlation with RNFL (r = -0.518, P=0.011) and its temporal quadrant (r = -0.594, P=0.003). Among all parts of MDS-UPDRS scale, Part III had the strongest correlation with OCT findings.

Conclusion: A correlation was found between the severity of the disease and the thinning of RNFL. MDS-UPDRS Part III subscale had the strongest correlation with RNFL thickness. Temporal quadrant RNFL became thinner as Parkinson’s disease severity increased.

Introduction

Recently medical attention been has attracted to non-motor aspects of Parkinson’s disease (PD). Visual information processing impairment is one of the significant non-motor symptoms which causes disability through visual hallucination and visa-spatial disorientation (1), and could have central or peripheral defective pathophysiology (1-5).

Retinal Nerve Fiber Layer (RNFL) is connected to PD progression and disability by many studies. Since its introduction in early 1990, Optical Coherence Tomography (OCT) become a non-invasive bio-tissue imaging technique in many medical fields, including PD and similar neurodegenerative disorders (6-8).

During the past 15 years, the majority of studies showed RNFL thickness had been reduced in PD.
Inzelberg et al. were the first who conducted a study on the applicability of OCT for PD. He assessed the RNFL thickness in the peripapillary area (9). A review conducted in 2019 by Chrysou et al., concluded that neurodegeneration processes and retinal degeneration is connected (10).

So far, it is still not clearly showed that RNFL changes are related to retinal neurodegeneration, ocular complication or vascular change in PD (11-14).

OCT also could be useful in differentiating between Parkinsonian syndromes such as Multisystem Atrophy (MSA), Progressive Supranuclear Palsy (PSP) (15,16) or Dementia with Lewy body (DLB).

Few studies have suggested that there could be a correlation between RNFL and visual symptoms (for example, visual hallucinations (17) or REM behavior Disorders (RBD)) (18).

The Unified Parkinson’s Disease Rating Scale (UPDRS) is a quantified tools for assessing different clinical aspects of PD. It was updated in 2007 by the Movement Disorder Society (MDS). MDS-UPDRS quantifies the severity of both motor and non-motor signs and symptoms.

As far as we know, nine studies have used UPDRS in their studies on RNFL thickness and PD (19-28). However, no study has yet used MDS-UPDRS.

The aim of this study is to investigate whether there is a correlation between RNFL thickness and the severity of PD by MDS-UPDRS?

Material and Methods

23 PD patients were compared to 23 healthy controls. These patients were selected from our neurology clinic at Shafa Hospital, Kerman University of medical sciences, Iran. The study protocol was approved by the Ethics Committee at Kerman University of Medical Science (KMU). The study funded by the Neurology research Centre, KMU. The United Kingdom Brain Bank criteria for the clinical diagnosis of idiopathic PD was applied to PD diagnosis. A written informed consent was obtained from all the subjects participating in the study.

Our exclusion criteria were: acute depression according to Beck Depression Inventory-II (BDI-II) questionnaire, severe head injury, brain surgery, cerebrovascular disease and epilepsy. The Mini-Mental Status Exam score <24 was also used to identify any subject with cognitive impairment. All subject had a thoroughly ophthalmological examination. Subjects had to have a corrected visual acuity of 7/10 or better, and intraocular pressure less than 22 mmHg. Further, subjects with history of ophthalmic trauma, surgery, or posterior pole pathologies, such as age-related macular degeneration, diabetic or hypertensive retinopathy, degenerative myopia, glaucoma, or suspected glaucoma were excluded from study.

MDS-UPDRS was used to quantify the PD severity. This scale encompasses four parts: Part I concerns “non-motor experiences of daily living”; Part II concerns “motor experiences of daily living”; Part III as “motor examination” and finally Part IV for “motor complications”.

480
Besides MDS-UPDRS score, disease duration and Levodopa equivalent dose were recorded.

RNFL in the superior, inferior and temporal pole of retina measured by the Heidelberg Spectralis

The collected data were analyzed using SPSS software version 20.0. Differences between the distributions of demographic characteristics were evaluated using the Student t-test and correlations between the OCT findings and the MDS-UPDRS score of patients were analyzed by linear regression. For all statistical tests, a P value<0.05 was considered statistically significant.

Results

18 subjects (78.3%) were male in each groups. There were no statistically significant differences between the mean age of PD (61.30± 11.57 years; range, 44–81 years) and NC (61.22± 11.39; range, 45–82 years; P=0.981). PD mean duration was 6.52± 4.08 years (range, 0–17 years) (Table 1).

| Table 1. Demographic characteristics and OCT findings of patient and control groups |
|---------------------------------|-----------------|-----------------|--------|
| | PD group | control | P-value |
| Sex | Female n (%) | 5(21.7) | 5(21.7) | 1 |
| | Male n (%) | 18(78.3) | 18(78.3) |
| Age (year) | 61.30± 11.57 | 61.22± 11.39 | 0.981 |
| RNFL (μm) | 95.47± 10.81 | 101.56± 7.96 | 0.035* |
| Nasal | 76.87± 12.47 | 74.04± 6.59 | 0.343 |
| Temporal (μm) | 71.10± 11.07 | 76.08± 8.69 | 0.091 |
| Superior (μm) | 116.56± 17 | 126.86± 10.02 | 0.021* |
| Inferior (μm) | 117.74± 19.55 | 126.96± 8.69 | 0.045* |

The study findings showed that there is RNFL thinness in PD compared to NC (87.75 to 126.75 μm (101.56± 7.96) in NC compared to 66.5 to 116.5 μm (95.47± 10.81) in PD. There was also a significant difference in the RNFL thickness of both Superior quadrant (126.86± 10.02 μm vs 116.56± 17 μm) and Inferior quadrant (126.96± 8.69 μm vs 117.74± 19.55 μm). (P=0.021 and P=0.045, between NC and PD respectively).

It was also found a correlation between MDS-UPDRS and OCT (Table 2). Considering the different parts of MDS-UPSRS, part III showed more correlation to RNFL (r = -0.633, P=0.001). These results suggest that the higher score in PD severity is associated with the lower RNFL thickness in these peripapillary areas.
Table 2. Correlation between OCT findings, PD duration and MDS-UPDRS score in PD Group

<table>
<thead>
<tr>
<th>Part 1</th>
<th>Part 2</th>
<th>Part 3</th>
<th>Part 4</th>
<th>MDS-UPDRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total OCT</td>
<td>r</td>
<td>P-value</td>
<td>r</td>
<td>P-value</td>
</tr>
<tr>
<td>RNFL (μm)</td>
<td>-0.333</td>
<td>0.124</td>
<td>-0.267</td>
<td>0.217</td>
</tr>
<tr>
<td>Nasal</td>
<td>0.024</td>
<td>0.912</td>
<td>-0.315</td>
<td>0.144</td>
</tr>
<tr>
<td>Temporal (μm)</td>
<td>-0.388</td>
<td>0.067</td>
<td>-0.319</td>
<td>0.138</td>
</tr>
<tr>
<td>Superior (μm)</td>
<td>-0.165</td>
<td>0.451</td>
<td>0.006</td>
<td>0.977</td>
</tr>
<tr>
<td>Inferior (μm)</td>
<td>-0.376</td>
<td>0.077</td>
<td>-0.205</td>
<td>0.348</td>
</tr>
<tr>
<td>PD duration</td>
<td>-0.245</td>
<td>0.26</td>
<td>0.053</td>
<td>0.811</td>
</tr>
<tr>
<td>Levodopa dose</td>
<td>-0.179</td>
<td>0.414</td>
<td>0.294</td>
<td>0.174</td>
</tr>
</tbody>
</table>

No statistically significant correlation found between RNFL and PD duration or Levodopa dose. (Table 3)

Table 3. Correlation between RNFL, RAVG, LAVG, PD duration and Levodopa dose

<table>
<thead>
<tr>
<th>RNFL</th>
<th>R</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD duration</td>
<td>0.054</td>
<td>0.806</td>
</tr>
<tr>
<td>Levodopa dose</td>
<td>0.292</td>
<td>0.177</td>
</tr>
</tbody>
</table>

The scatter plot and linear regression for MDS-UPDRS mean score and RNFL mean thickness presented in Figure 1. The regression equation: MDS-UPDRS=208.517-1.428* RNFL was developed to predict PD severity from these RNFL. According to regression model, The RNFL is responsible for 27% of the variation in the MDS-UPDRS score. We also used different regression equation between Temporal quadrant and MDS-UPDRS score: MDS-UPDRS=185.603-1.598* Temporal (Figure 2). The Temporal quadrant explains 35% of the variations in the MDS-UPDRS score according to this regression. The total RNFL and its temporal quadrant correlate nearly 50% variation on the MDS-UPDRS score. Considering MDS-UPDRS part 3, the average RNFL and the temporal quadrant explain 40%-42% of the variation respectively (Figures 3 & 4).
Discussion

Our study showed that there is possible correlation between PD severity, measured by MDS-UPDRS and decrement of Peripapillary RNFL. In PD, retinal layer thickness reduces more at temporal superior and inferior quadrants of retina. The significant correlation was observed between part III of MDS-UPDRS (Motor examinations) and RNFL. We were not able to find any significant correlation between Part I (non-motor symptoms) and Part II (Motor symptoms of activity of daily living) and RNFL. Although more items can explain the higher correlation of the MDS-UPDRS part III at that part (33 in part III compared to 13 in Part I and II and...
13, and 6 in part IV) and the emphasis of authors of this scale on motor examination.

The correlation between RNFL in PD has been investigated in many previous studies (18,24,25,29-31). PD severity was measured by less reliable tools, such as Hoen and Yahr scale (32) or UPDRS (33 34) The role of OCT in PD severity, risk of dementia and its predictive value for visual complications in follow up are also highlighted by a few studies (20,35-43) or risk of future dementia (44). These findings make OCT a valuable biomarker for the evaluation of PD patients (45-48).

In contrary to Mailankody el. which RNFL thinness was reported to be more prominent in Macular region, our study showed that parapapillary region mostly affected (24).

According to Roth et al., may technical challenges exist in doing OCT in PD patients; mainly due to tremor or cognitive changes (21).

We also found no correlation was found between duration of Levodopa use and RNFL thickness. Our study’s power was not enough to make a correlation between visual symptoms in PD and RNFL thickness. Long-term longitudinal studies are needed to confirm the role of RNFL assessment as a biomarker of disease progression (40,42).

Conclusion

To conclude, it seems that retinal thickness reduces in PD, especially in its superior and inferior quadrants. There might be a correlation disease severity RNFL thickness. This study showed that RNFL in Temporal quadrant associates with Parkinson’s disease severity. The study findings recommend OCT as a non-invasive and quantitative tool in estimating Parkinson’s disease severity. It is also recommendable that the thickness of RNFL might be an acceptable indicator for progression motor disability in PD as a noninvasive technique.

Acknowledgment

We are profoundly grateful to all our subjects for devoting their time to help us complete MDS-UPDRS scale and taking OCT.

We express our gratitude to the Neurology research centre and the Student Research Committee of Kerman University of Medical Sciences.

References

485

