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ABSTRACT 
Background: Adult hippocampal neurogenesis and synaptogenesis play a critical role in learning 
and memory. Crocin as a carotenoid has many neuroprotective effects but its effect on 
neurogenesis and synaptogenesis is unknown. In this study, the effects of crocin administration 
from post-lactation period to adulthood on the mice hippocampal neurogenesis and 
synaptogenesis were investigated. 
Methods: 12 mice offspring were divided into 2 groups of control and crocin. Animals in the 
crocin group received 30 mg/kg of crocin from postnatal day 30 to 75 through drinking water. At 
the same time, the control group received drinking water without crocin. At the end of the 
treatment, animals were sacrificed and their brains were removed. The brains were sectioned 
and stained by immunohistochemical technique to evaluate the effect of crocin on hippocampal 
doublecortin (DCX) positive cells and synaptophysin expression. 
Results: The results of the immunohistochemistry showed that the mean number of DCX+ cells 
in the dentate gyrus (DG) of the crocin group was significantly higher than that in the control 
group. In addition, the synaptophysin expression was higher in the cornu ammonis (CA) of the 
hippocampus in the crocin group. 
Conclusion: According to the results, consumption of crocin from childhood to adulthood may 
increase hippocampal neurogenesis and synaptogenesis. 
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Introduction 

ognitive performance in adulthood is 

very important and depends on many 

factors. One of the most important factors 

is the generation of new neurons in the 

hippocampus (1,2). It has been documented that 

neurogenesis occurs in mammals including 

humans in the dentate gyrus (DG) of the 

hippocampus throughout life and plays a crucial 

role in cognition (2-4). Along with the DG, 

cornu ammonis (CA) of the hippocampus that 

consists of CA1, CA2, and CA3 has a 

fundamental role in cognitive performance (5). 

Some important fibers connect different regions 

of the hippocampus with each other and their 

synapses are essential for cognitive performance 

(5). Adult hippocampal neurogenesis and 

synaptogenesis can be affected by various 

factors such as age, genetics, nutrition, stress, 

and toxic substances (2). The results of the 

previous studies have shown that one of the most 

important factors that affects the neurogenesis 

and synaptogenesis in adults is ageing. Adult 

hippocampal neurogenesis and synaptogenesis 

decreases with age as well as neurodegenerative 

diseases such as Alzheimer's and Parkinson's 

diseases (6,7). 

On the other hand, the results of the previous 

studies indicate the beneficial effects of nutrition 

on memory. Among all, carotenoids are well 

known. The results of Zielińska et al. showed 

that older people who regularly eat fruits, 

vegetables, and carotenoids have a higher 

memory performance than others (8). Crocin 

(active constituent of saffron) with chemical 

formula (C44H64O24) is a carotenoid, which its 

protective properties are well known (9,10). 

Studies have shown that crocin is able to protect 

the neurons against oxidative stress, 

inflammation, diseases, and toxic materials (9-

13). Crocin has also been shown to have 

neuroprotective effects against memory-

impairing diseases such as diabetes, Alzheimer's 

disease, and Parkinson's disease (10,13-15).  

Moreover, the results of a previous study 

have shown that crocin is able to improve 

memory and learning in ethanol-treated animals 

by improving the hippocampal long-term 

potentiation,  a form of activity‐dependent 

synaptic plasticity that plays a crucial role in 

learning and memory (16). In addition, crocin 

increases the expression of some factors that are 

related to neurogenesis such as neurotrophins 

and cAMP-response element binding protein 

(CREB) in the brain (17,18). 

Therefore, regarding the neuroprotective 

effects of crocin and its potential to improve 

memory, the present study was conducted to 

investigate the effect of crocin on the 

hippocampal neurogenesis and synaptogenesis. 

One of the well-recognized markers in the 

neurogenesis is doublecortin (DCX) (3,19,20). 

DCX is a microtubule-associated protein, which 

is specifically expressed only in neuronal 

progenitor cells and does not exist in the mature 

neurons. Thus, the detection of this marker with 

immunohistochemistry in a region of the brain 

indicates the neurogenesis in that area (3,20). 

Therefore, in the present study, the effects of 

crocin on the hippocampal neurogenesis were 

evaluated by DCX-immunohistochemistry. In 

addition, the expression of synaptophysin as a 

synaptic molecule involved in cognitive 

performance was evaluated by 

immunohistochemistry (21-23).  

 

Materials and Methods 

Materials 

The crocin was provided from the Buali 

Research Institute of Mashhad University of 

Medical Sciences, Iran. Primary antibodies 

including rabbit anti-DCX (ab207175) and 

rabbit anti-synaptophysin (ab14692) were 

purchased from Abcam, the USA, and the 

secondary antibody (DAKO En Vision + 

System, Peroxidase) was purchased from Dako, 

Denmark. 

 

Animals and treatment groups 

Adult BALB/c mice weighing 35-40 g were 

purchased from the animal center of Mashhad 

University of Medical Science and housed at 22 

± 2°C with a 12:12 h light/dark cycle in normal 

laboratory condition.  

Male mice mate with the female mice, and 

after the pregnancy, female mice were kept in the 

separate cages. In total, 12 pregnant mice were 

used in this study. 

Mice and their offspring were cared until 30 

days after delivery. Then, one male offspring 

was separated from each mother, and finally, 12 

male offspring were divided into two control and 

crocin groups (6 in each group). The crocin 

group received crocin daily at a dose of 30 mg/kg 

(10) via drinking water, and the control group 

received no treatment and just consumed 

drinking water without crocin. The duration of 

administration was 45 days and continued until 

C  



Journal of Kerman University of Medical Sciences 2021; Vol. 28, Issue 3 

245 

the 75th day after birth (postnatal day 75). All 

protocols in the present study were approved by 

the Institutional Animal Care Committee of 

Mashhad University of Medical Sciences 

(Ethical code: IR.MUMS.fm.REC.1397.17). 

 

Sample preparation 

At the end of the treatment, the animals were 

anesthetized by Ketamine (75 mg/kg, IP) and 

Xylazine (10 mg/kg, IP) (24,25), cardiac 

perfusion was performed, and eventually, the 

animals were sacrificed. Then, the brains were 

removed from the skull and fixed in 10% 

normalin for one week. Because normalin fixes 

the brains better than formalin, it was used as a 

fixative in this study. Normalin was made by 

combining 10 ml of formaldehyde with 90 ml of 

normal saline. After that, the brains were 

dehydrated in alcohol, cleared in xylene, and 

embedded in paraffin. Using microtome, the 

brains were cut into 5 μm coronal serial 

sections5 μm-thick in coronal serial section with 

a 100 μ interval. The sections range from -1.5 to 

-2.5 to Bregma. Finally, the sections were used 

for immunohistochemistry (IHC) staining in 

order to detect doublecortin positive (DCX+) 

neurons as well as synaptophysin expression in 

the hippocampus. 

 

Immunohistochemistry  

In the IHC staining, the procedure was 

performed on two consecutive days. On the first 

day, the sections were placed inside the xylene 

to remove the paraffin of the specimens. Then, 

they were placed in ethanol, distilled water, and 

PBS, respectively. Samples were exposed to 3% 

H2O2 in PBS for 15 min after heat-induced 

antigen retrieval. The next step was to use goat 

serum for 20 minutes. Finally, after washing 

with PBS, the samples were exposed to a 

primary antibody against the DCX and 

synaptophysin for one night (overnight). On the 

second day of staining, the samples were washed 

with PBS and exposed to secondary antibody 

(goat anti-rabbit IgG) for 90 min. Finally, they 

were exposed to DAB and placed in hematoxylin 

(3,10,26). 

After staining, the hippocampus of all 

prepared slides were photographed with the 

Olympus imaging system. 

For each slide, imaging was performed from 

both right and left dentate gyri and DCX+ 

neurons were counted using stereological grid 

and the following formula: 

 
where NA is the number of neurons in area, 

ƩǬ is the sum of counted particles in the 

sections, a/f is the area associated with each 

frame, and ƩP is the sum of frame-associated 

points hitting the defined space (10,26,27). 

Besides, image J software was used to 

measure average staining intensity for evaluating 

the  

synaptophysin expression in both DG and 

cornu Ammonis (CA) areas of the hippocampi. 

Then, average staining intensity was 

transformed to optical density (OD) using the 

following  

formula for statistical analysis (28-30). 

Optical density = log (
Max intensity

Mean intensity
) 

The max intensity in image J is 255. 

Statistical analysis 

Data were analyzed using SPSS software 

version 20. Data were analyzed by t-test and P < 

0.05 was considered statistically significant. All 

steps of stereology and analysis of the results 

were performed blindly and repeated twice. 

 

Results 

The results of DCX immunohistochemistry 

The analysis of IHC results showed that the 

mean number of doublecortin positive neurons 

in the dentate gyrus of crocin group was 

significantly higher than that in the control group 

(P < 0.05). 

The mean number of these neurons in the 

control group was 170.33 ± 20.53 cells/mm2 

whereas 

it was 227.05 ± 17.5 cells/mm2 in the crocin 

group (Figures 1 and 2). 

This increase in the mean number of DCX+ 

neurons in the dentate gyrus, indicates an 

increase in neurogenesis.   
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Figure 1. The comparison of the mean number of DCX+ neurons in the dentate gyrus between control and crocin groups. There 

is a significant difference between two groups, which indicates an increase in neurogenesis in the crocin group.  
*Statistically significant at P <0.05. 

 

 
Figure 2. Microscopic image of the DG of both control and crocin groups. DCX+ cells are visible in the subgranular zone of 

the dentate gyri in brown (arrows). As shown in the microscopic images, the number of DCX+ neurons in the crocin group is 

more than that in the control group. Magnification = 200; Scale bar = 200 µm. 

 

The results of synaptophysin 

immunohistochemistry 

The results revealed that crocin 

administration can increase synaptogenesis in 

the CA region of the hippocampus (Figures 3 

and 4). The OD for synaptophysin expression in 

the CA was 0.266 ± 0.019 and 0.344 ± 0.013 in 

control and crocin groups, respectively. This 

difference was statistically significant (P < 0.01). 

The mean OD for synaptophysin expression 

in the DG was 0.25 ± 0.017 and 0.267 ± 0.014 

for control and crocin groups, respectively, and 

there was no significant difference between two 

groups (Figure 3). 
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Figure 3. The comparison of the mean OD of synaptophysin expression in the hippocampus between control and crocin groups. 

Synaptophysin expression in the hippocampal CA region of the crocin group was significantly higher. The mean OD in the DG 

of the crocin group was also higher than control group but this difference was not significant. 
**Statistically significant level was considered at P < 0.01. 

 

 
Figure 4. Microscopic image of the hippocampus in both control and crocin groups to show synaptophysin immunoreactivity. 

DG is marked in green and CA is marked in blue. The mean OD in the CA region of the hippocampus was significantly higher 

in the crocin group. Magnification = 40; Scale bar = 1000 µm. 

 

Discussion 

The main purpose of this study was to 

investigate the beneficial effects of crocin on the 

adult hippocampal neurogenesis and 

synaptogenesis. The results of the present study, 

notably for the first time, showed that the crocin 

is able to increase hippocampal neurogenesis 

and synaptogenesis in adult brain. 

In the present study, administration of crocin 

in the post lactation period was able to increase 

the number of DCX+ neurons in adult dentate 

gyrus, which indicates an increase in 

neurogenesis. Previous studies have reported 

that neurogenesis rates of dentate gyrus can be 

affected by various factors. For example, it has 

been proven that neurogenesis rate can be 

affected by neurotrophic factors such as brain-
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derived neurotrophic factor (BDNF) and 

neurogenesis increases by stimulating this 

neurotrophic factor (31). On the other hand, 

crocin increases the expression of neurotrophic 

factors, including BDNF (32). Neurotrophins 

have important roles in central nervous system 

(CNS) function. They are known as neuronal 

differentiation regulator and play a key role in 

the CNS regeneration (33). 

Nerve growth factor (NGF) is another 

neurotrophin that along with BDNF plays an 

important role in neural activities. This 

neurotrophin role is important for neurogenesis 

because it regulates various stages of neuronal 

precursor maturation. NGF induces cell 

differentiation through several ways including 

activation of canonical NGF-TrkA-PI3K-Akt 

signaling axis and releasing of cyclic adenosine 

monophosphate (cAMP). It also increases the 

expression of shootin-1, which is essential for 

axon formation and neuron polarization (34,35).  

It has been shown that anti-NGF transgenic 

mice has a significant reduction in neural 

precursors (36). Meanwhile, it has been proven 

that the decrease in NGF is associated with the 

decrease in neurogenesis in the aging brain (37). 

Taken together, any decrease in NGF results in 

neurogenesis reduction. So, it seems that crocin 

increases neurogenesis by increasing the 

neurotrophins level in the brain.  

In addition, the role of CREB in neurogenesis 

can also be noted. CREB is present in newborn 

neurons of the dentate gyrus from 3 to 21 days 

after generation of the neuron. The results of the 

previous studies have shown that this factor is 

essential for survival of newborn neurons 

through various routes. For example, CREB 

signaling controls the expression of the paired 

box 6 (Pax6) and DCX in newborn neurons. It 

has been demonstrated that the inhibition of the 

CREB, leads to the loss of the Pax6 and DCX 

expression, which decreases the number of the 

newborn neurons (38). CREB increases the rate 

of hippocampal neurogenesis and, on the other 

hand, crocin has been shown to increase the 

amount of this factor (32). Therefore, a part of 

the increase in neurogenesis rate with crocin 

administration in the present study may be due 

to the increase of this marker. 

Another important factor that can influence 

the neurogenesis of adult brain is stress (39). 

Stress and oxidative stress can affect the nervous 

system through variety of mechanisms and 

damage the neurons (40-42). It can also reduce 

the rate of neurogenesis in the dentate gyrus. On 

the other hand, crocin is an anti-stress and anti-

oxidative stress agent (9,10,43). 

In addition to the mentioned points, there are 

other possibilities in this regard. For example, 

the role of peptide orexin was also mentioned in 

this study. The stimulation of the hippocampus 

by orexin, results in an increase in the 

neurogenesis in the dentate gyrus (44,45). The 

hippocampus has a receptor for orexin A, and its 

neurons are strongly stimulated by this peptide 

(46). Therefore, crocin may also increase 

neurogenesis through the orexin pathway, which 

this is a theory and requires further studies to 

prove it. 

In the present study, it was also found that 

besides neurogenesis, hippocampal 

synaptogenesis is also increased after 45 days 

crocin administration. Today, it is well 

documented that synaptogenesis is an integral 

part of the memory process and plays a vital role 

in learning and memory. Synaptophysin is a 

synaptic molecule and is the marker of synaptic 

density. This protein is richly expressed in the 

presynaptic vesicles of the axons and is the most 

abundant integral membrane protein of synaptic 

vesicles in neurons (47,48). In the previous 

studies, the reduction of synaptophysin has been 

reported in the hippocampus due to different 

factors such as aging (47). Therefore, it seems 

that crocin can support the synaptic connectivity 

and memory formation by preventing a decrease 

in synaptophysin level. The different regions of 

the hippocampus are connected to each other by 

several fibers. For example, mossy fibers 

connect the DG to the CA3. These fibers 

originate from DG and synapse with the neurons 

of the CA3. Some other important fibers, 

Schaffer collateral fibers, connect the CA3 to the 

CA1, which play a critical role in memory 

formation (5). As both DG and CA are involved 

in cognitive performance, in the present study, 

the effect of crocin on the synaptophysin 

expression was investigated in both DG and CA 

areas. Whereas, because adult hippocampal 

neurogenesis occurs only in the dentate gyrus 

(3), neurogenesis was investigated only in this 

area of the hippocampus. In this study, it was 

found that crocin administration increases the 

mean OD in the CA significantly, which 

indicates an increase in synaptogenesis in this 

region of the hippocampus. Whereas, no 

significant difference was observed in the mean 

OD of the DG between two groups. Its exact 

reason is not clear but it may be due to the 

abundance of synapses in the CA. Many 
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differences have recently been reported between 

DG and CA including differences in synaptic 

plasticity (49). Since CA is formed by the large 

pyramidal cells, the surface area of the CA is 40 

times larger and needs a huge connectivity (48) 

and as mentioned above, this area has more 

synapses than DG (5, 49, 50). Another reason for 

this difference in OD between the DG and CA 

may be due to the high sensitivity of the 

pyramidal cells. The pyramidal cells in the CA 

have been shown that are more sensitive than the 

DG granular cells and are more affected by 

various internal and external factors (49).  

The main limitation of the present study is 

that this study focused only on the hippocampal 

neurogenegis and synaptogenesis, and 

behavioral performance was not investigated in 

this study. Regarding the close relationship 

between hippocampus and cognitive 

performance, the authors suggest the 

investigation of the effects of crocin 

administration from childhood to adulthood on 

the behavioral performance such as memory and 

learning. 

 

Conclusion  

Regular consumption of crocin from 

childhood to adulthood in mice may increase 

neurogenesis of dentate gyrus as well as 

hippocampal synaptogenesis. Therefore, it may 

reduce the age-related learning and memory 

impairments, which should be investigated in the 

future studies. 
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