Document Type : Original Article

Authors

1 Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran

2 Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran.

3 Department of Internal Medicine, School of Medicine, Spiritual Health Research Center, Qom university of Medical Sciences, Qom, Iran

Abstract

Background: Drug resistant Acinetobacter baumannii have emerged as a major problem in many hospitals and intensive care units. The aim of this study was to determine the antibiotic resistance pattern and the prevalence of metallo-beta-lactamase genes among nosocomial A. baumannii isolates from Qom/ Iran.
Methods: For this study, a total of 108 A. baumannii isolates were collected from hospitalized patients in four teaching hospitals of Qom/ Iran. Antibiotic susceptibility profile of isolates was tested by Kirby-Bauer disc diffusion method and distribution of MBL genes among carbapenem-resistant isolates was determined by polymerase chain reaction (PCR) method.
Results: According to the results, 97 (89.81%) isolates of 108 A. baumannii isolates were resistant to carbapenem. All isolates carried bla oxa-51like gene. Among carbapenem resistant isolates, 79.38% carried bla VIM and 1.03% had bla IMP genes. Among the MBL- producing isolates, 7 isolates were MDR, 73 ones were XDR and 5 isolates were PDR.
Conclusion: This study also revealed that suceptibility to carbapenems in the population of A. baumannii isolates reduced and the bla VIM gene was the most prevalent metallo-beta-lactamase genotype among carbapenem resistant A. baumannii isolates in this area. MBL-producing A. baumannii in recent years has become a serious concern. Rapid identification and good infection control are requiered to reduce their impact.

Keywords

  1. Bergogne-Berezin E, Towner KJ. Acinetobacter as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996; 9(2):148-65. doi: 10.1128/CMR.9.2.148.
  2. Katsaragakis S, Markogiannakis H, Toutouzas KG, Drimousis P, Larentzakis A, Theodoraki EM, Theodorou D. Acinetobacter baumannii infections in a surgical intensive care unit: predictors of multi-drug resistance. World J Surg. 2008; 32(6):1194-202. doi: 10.1007/
    s00268-008-9571-3.
  3. Fournier PE, Richet H. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis. 2006; 42(5):692-9. doi: 10.1086/500202.
  4. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH. Manual of clinical microbiology. 7 th ed. Washington D.C: ASM Press; 1999. pp. 517-525.
  5. Coelho J, Woodford N, Turton J, Livermore DM. Multiresistant acinetobacter in the UK: how big a threat? J Hosp Infect. 2004; 58(3):167-9. doi: 10.1016/j.jhin.2003.12.019.
  6. Mohajeri P, GHolamin B, Fathi M, Rezaei M, Zahrabi A. Antibiotic resistance of clinical isolates of acinetobacter baumannii in hospitals of Kermanshah, Iran during one year. Journal of Kerman University of Medical Sciences. 2012; 19(4): 405-412.
  7. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18(3):268-81. doi: 10.1111/j.1469-0691.
    03570.x.
  8. Quale J, Bratu S, Landman D, Heddurshetti R. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin Infect Dis. 2003; 37(2):214-20. doi: 10.1086/
  9. Brown S, Amyes S. OXA (beta)-lactamases in Acinetobacter: the story so far. J Antimicrob Chemother. 2006; 57(1):1-3. doi: 10.1093/jac/
  10. Walsh TR. The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria. Clin Microbiol Infect. 2005; 6:2-9. doi: 10.1111/
    1469-0691.2005.01264.x.
  11. Fazeli H, Nazari F, Mirzaie M. The determination of metallo-beta-lactamase enzymes prevalence in pseudomonas aeruginosa using etest and their antibiogram patterns in Kermanshah, Iran. Journal of Kerman University of Medical Sciences. 2015; 22(5):491-498.
  12. Maltezou HC. Metallo-beta-lactamases in Gram-negative bacteria: introducing the era of pan-resistance? Int J Antimicrob Agents. 2009; 33(5):405-7. doi: 10.1016/j.ijantimicag.2008.09.
  13. Bergogne-Bérézin E, Towner KJ. Acinetobacter as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996; 9(2):148-65. doi: 10.1128/
    CMR.9.2.148.
  14. Turton JF, Woodford N, Glover J, Yarde S, Kaufmann ME, Pitt TL. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol. 2006; 44(8):2974-6. doi: 10.1128/JCM.01021-06.
  15. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests, Approved Standard-Eleventh edition; 2012. Users/ASUS/Downloads/01-CLSI-
    M02-A11-2012.pdf
  16. Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol. 2005; 43(7):3129-35. doi: 10.1128/
    43.7.3129-3135.2005.
  17. Kiaie, S., Abtahi, H., Mosayebi, G., Alikhani, M. Expression of recombinant protein b subunit pili from vibrio cholera. Journal of Kerman University of Medical Sciences. 2012; 19(4): 337-344.
  18. Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother. 2007; 59(2):321-2. doi: 10.1093/jac/dkl481.
  19. Valencia R, Arroyo LA, Conde M, Aldana JM, Torres MJ, Fernandez-Cuenca F, et al. Nosocomial outbreak of infection with pan-drug-resistant Acinetobacter baumannii in a tertiary care university hospital. Infect Control Hosp Epidemiol. 2009; 30(3):257-63. doi: 10.1086/595977.
  20. Nowak-Zaleska A, Krawczyk B, Kotłowski R, Mikucka A, Gospodarek E. Amplification of a single-locus variable-number direct repeats with restriction fragment length polymorphism (DR-PCR/RFLP) for genetic typing of Acinetobacter baumannii strains. Pol J Microbiol. 2008;57(1):11-7. PMID: 18610651.
  21. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008; 21(3):538-82. doi: 10.1128/CMR.00058-07.
  22. Japoni-Nejad A, Sofian M, Belkum A V, Ghaznavi-Rad E. Nosocomial outbreak of extensively and pan drug-resistant acinetobacter baumannii in tertiary hospital in central part of Iran. Jundishapur J Microbiol. 2013; 6(8): e9892. doi: 10.5812/jjm.9892.
  23. Gur D, Korten V, Unal S, Deshpande LM, Castanheira M. Increasing carbapenem resistance due to the clonal dissemination of oxacillinase (OXA-23 and OXA-58)-producing Acinetobacter baumannii: report from the Turkish SENTRY Program sites. J Med 2008; 57(12):1529-1532. doi: 10.1099/
    jmm.0.2008/002469-0.
  24. Stoeva T, Higgins PG, Savov E, Markovska R, Mitov I, Seifert H. Nosocomial spread of OXA-23 and OXA-58 beta-lactamase-producing Acinetobacter baumannii in a Bulgarian hospital. J Antimicrob Chemother. 2009; 63(3):618-20. doi: 10.1093/jac/dkn537.
  25. Feizabadi MM, Fathollahzadeh B, Taherikalani M, Rasoolinejad M, Sadeghifard N, Aligholi M, et al. Antimicrobial susceptibility patterns and distribution of blaOXA genes among Acinetobacter Isolated from patients at Tehran hospitals. Jpn J Infect Dis. 2008; 61(4):274-8. PMID: 18653968.
  26. Rahbar M, Monnavar KM, Vatan KK, Fadaei-haq A, Shakerian F. Carbapenem resistance in gram negative bacilli isolates in an Iranian 1000-bed Tertiary Hospital. Pak J Med Sci. 2008; 24(4): 537-40.
  27. Peymani A, Nahaei MR, Farajnia S, Hasani A, Mirsalehian A, Sohrabi N, et al. High prevalence of metallo-beta-lactamase-producing acinetobacter baumannii in a teaching hospital in Tabriz, Iran. Jpn J Infect Dis. 2011; 64(1):69-71. PMID: 21266761.
  28. Amin M, Navidifar T, Saleh Shooshtari F, Goodarzi H. Association of the genes encoding Metallo-β-Lactamase with the presence of integrons among multidrug-resistant clinical isolates of Acinetobacter baumannii. Infect Drug Resist. 2019; 12:1171-1180. doi: 10.2147/
    S196575.
  29. Papa A, Koulourida V, Souliou E. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in a newly established Greek hospital. Microb Drug Resist. 2009; 15(4):257-60. doi: 10.1089/mdr.2009.0060.
  30. Yan JJ, Wu JJ, Tsai SH, Chuang CL. Comparison of the double-disk, combined disk, and Etest methods for detecting metallo-beta-lactamases in gram-negative bacilli. Diagn Microbiol Infect Dis. 2004; 49(1):5-11. doi: 10.1016/j.diagmicrobio.2004.01.002.
  31. Erfani Y, Yaghuobi S, Fallah F, Rahbar M, Rasti A, Ghanati K. Detection of bla NDM-1, bla VIM and bla IMP genes in multidrug resistant Acinetobacter baumannii and Pseudomonas aeruginosa from clinical isolates in Tehran hospitals. International Journal of Advanced Biotechnology and Research. 2017; 8(2):500-6.
  32. Mohamed N, Raafat D. Phenotypic and genotypic detection of metallo-beta-lactamases in imipenem resistant Acinetobacter baumannii isolated from a Tertiary Hospital in Alexandria, Egypt. Res J Microbiol. 2011; 6(10):750-60. doi: 10.3923/jm.2011.750.760.
  33. Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, Rossolini GM, Chong Y. Novel acquired metallo-beta-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother. 2005; 49(11):4485-91. doi: 10.1128/AAC.49.11.4485-4491. 2005.
  34. Shahcherghi F, Abbasalipour M, Feizabadi MM, Ebrahimipour GH, Akbari N. Isolation and genetic characterization of metallo-beta-lactamases and carbapenemase producing strains of Acinetobacter baumannii from patients at Tehran hospitals. Iran J Microbiol. 2011; 3(2):68-74. PMID: 22347585.