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ABSTRACT 
Background: Several types of cancer have mutations in the tumor suppressor gene p53. 
Environmental mutagens such as heavy metals play an undeniable role in p53 mutations and 
leave the mutational fingerprint on the TP53 gene. Therefore, the study of p53 mutation spectra 
can reflect the past heavy metals exposure.  
Results: The current study was found interesting results by reviewing the previous data 
published in the databases. These results were obtained by comparing the common mutational 
profile between Iran, India, and Pakistan, and the association of these mutations with metals. 
The mutations in codons 146 (TGG→ TGA, Trp→ Stop), 214 (CAT→CGT, His→ Arg), and 249 
(AGG→AGT, Arg→ Ser) were common in both India and Iran, due to the contamination by zinc 
and arsenic; arsenic and copper; cadmium, arsenic, nickel, and copper poisoning, respectively. 
Moreover, the mutations in codons 248 (CGG→ CAG, Arg→ Gln), 220 (TAT→ TGT, Tyr→ Cys), 
248 (CGG→ TGG, Arg→ Trr), and 273 (CGT→ CAT, Arg→ His) were common among these three 
countries that could be related to poisoning with arsenic and zinc; arsenic; copper and arsenic; 
zinc and arsenic, respectively. These results can give a possible explanation for the cause of 
mutational similarities in these three areas, which can help identify the cause of high rates of 
p53 mutation and cancer control in these areas.  
Conclusion: However, concerning the effects of other environmental factors, we definitely 
cannot explain the cause of these mutations among the heavy metals mentioned, since it 
requires more detailed studies. 
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Citation: Pouladi N, Sadi Khosroshahi N, Valipour M, Abdolahi S. p53 mutation possibility and food dietary containing heavy metals. Journal of 
Kerman University of Medical Sciences 2021; 28(6): 626-636. doi: 10.22062/JKMU.2021.91837 

Received: 04.02. 2021 
Accepted: 14.07. 2021 
*Correspondence: Nasser Pouladi; Email: nasserpouladi52@gmail.com 

Published by Kerman University of Medical Sciences 

  

 
10.22062/JKMU.2021.91837 

Review Article 

http://jkmu.kmu.ac.ir/
https://dx.doi.org/10.22062/jkmu.2021.91837
mailto:nasserpouladi52@gmail.com
https://dx.doi.org/10.22062/jkmu.2021.91837


Journal of Kerman University of Medical Sciences 2021; Vol. 28, Issue 6 

627 

Introduction 

 large number of deaths in developing 

countries are due to cancer (1). Finding a 

cause-effect relationship between heavy 

metals exposure and health is one of the 

environmental health challenges. The p53 tumor 

suppressor gene mutational spectra, as well as 

the frequency of these mutations, can provide 

information on heavy metals exposure and 

doses. Therefore, p53 mutations have been used 

to find out the relationship between cancers and 

heavy metals exposure through the diet. On the 

other hand, the relationship between heavy 

metals exposure and cancer is known (2). The 

gene encoding  p53 protein is located on the short 

arm of chromosome 17 (17p13.1). The mutation 

in this location is seen in most human cancers, 

and most of the tumors have a p53 mutation (3). 

So, the mutation at this location can occur by 

compounds of metal such as arsenic, cadmium, 

copper, iron, and nickel. These metals are known 

as carcinogens because of their effects on human 

health (4). Heavy metals directly or indirectly 

affect p53 (5). This means that heavy metals: (1) 

change p53 folding by interacting with it (6); (2) 

inhibit the main repair systems of 

deoxyribonucleic (DNA), in which the 

mutations are accumulated and the genomic 

instability occurs (5); (3) create oxidative DNA 

damage by creating oxidative stress  (7) and 

activate cell growth-stimulating signaling 

cascades (8, 9). Frame shifts and point mutations 

are the common mutations in p53 that lead to the 

mutated protein expression due to amino acid 

changes (10) and decreased expression of p53 

protein, respectively (11). While wild p53 is 

considered a tumor suppressor because of the 

cell cycle arrest activity, the mutated p53 loses 

apoptotic ability and causes tumorigenesis and 

metastasis (12). 

Animals and humans can significantly absorb 

heavy metals through food, especially cereals 

(13). Rice is one of the commonly used cereals 

throughout the world and is the main food in 

Asian countries such as Iran. Given that the great 

share of the imported rice is from India and 

Pakistan, the heavy metals concentration in the 

imported rice from the two mentioned countries 

must be further taken into consideration in 

comparison with Iranian rice. High 

concentrations of heavy metals in Hindi and 

Pakistani rice have been reported in previous 

studies (14-18).  

The present report implies the important 

consideration of heavy metals in Hindi and 

Pakistani rice and possible relationship with 

cancer problems in Iran  and determines 

comparative p53 mutation profiles for Iran, 

Pakistan, and India. 

 

Search strategy 

This review was conducted and reported 

according to quality standards described in the 

PRISMA 2015 checklist. Two reviewers 

independently performed study selection, 

evaluation, and data extraction. The 

discrepancies in the reviews were resolved by 

consensus. 

Databases PubMed, Web of Science, and 

Scopus were searched based on the following 

keywords: “heavy metals”, “heavy metal 

contamination”, “rice contamination”, “p53”, 

“ROS”, “p53 mutation”, “dietary 

contamination”, “environmental 

contamination”, “Iran”, “Pakistan”, and “India”. 

As inclusion criteria, the study objective of 

the publications was checked regarding the 

association of heavy metals involvement in p53 

mutations and prevalence of heavy metal 

contaminations in rice. The exclusion criteria 

were studies investigating the mentioned 

objectives in countries other than Iran, Pakistan, 

or India.  

The information related to the author, year of 

publication, studied population, and study design 

was noted and summarized. Studies that did not 

evaluate any relationship between heavy metals 

and p53 mutations in terms of environmental and 

food contamination were excluded from the 

study.  

 

Heavy metals and p53  

Heavy metals affect the TP53 gene and 

protein through three potential mechanisms: 1) 

producing reactive oxygen species (ROS): 

Hydroxyl radicals and other anions are produced 

by the Fenton and Fenton-like reactions. Most 

DNA damage is caused by hydroxyl radicals (19, 

20); 2) Changing p53 transcription and protein 

expression: Epigenetic alterations such as 

methylation can affect the p53 gene expression 

(21, 22); 3) Unfolding p53: Some heavy metals 

like mercury, cadmium, and copper destroy the 

p53 protein function by replacing zinc metal in 

wild protein structure  (23-25). In some studies, 

the association between the accumulation of 

A  
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some metals such as iron and copper with an 

aberrant p53 expression in cancer has been 

shown (26-28). So, heavy metals can change the 

p53 function, folding, and expression. A 

summary of the effect of the metal on p53 is 

shown in Table 1 and Figure 1. 

 
Table 1. Summary of the effect of the metal on p53 

Metal Cancer 
Mutations and 

Aberrations 
Effects Refs 

Cadmium 

Colon; 
Hepatocellular 

carcinoma; 

Prostate; 
Breast; 

and Lung cancer 

Chromatid gap and break; 

Chromosome gap and 
break; 

Acentric fragment; 

Tetraploidy; 
Dicentric 

Efficiency binding of tumor suppressor p53 to 

DNA inhibited; 

8-oxo-dGTPase inhibited; 
Oxidative damage caused 

(87) 

G:C to T:A (88) 

G → T (89) 

Copper 
Liver 

G:C to T:A; 
C:G to A:T; 

C:G to T:A 
Oxidative damage caused 

(27) 

- C→ T (44) 

Iron 

Liver G: C to T:A 

Oxidative damage caused 
(27) 

Hepatocellular 

carcinoma 

A:T to C:G; 

G:C to C:G; 

G:C to A:T; 
G:C to T:A (51) 

Zinc - G → A 

Decrease of Apoptosis; 

Increase of  p53-dependent mRNA and protein 
expression through p21 and  p53 upregulated 

modulator of apoptosis  ( PUMA) 

(90) 

Nickel Lung G:C to T:A Increase of 8-oxo-dGTP (74, 89) 

Arsenic 

Skin 

G:C to T:A; 

C → T; 

G → A; 

G → C; 

T → A; 
G→ T; 

T→ C; 

C→ A; 
less frequent 

A:T to T:A; 

G:C to C:G; 
G:C to T:A; 

A:T to C:G 

Oxidative  damage cause 

(39) 

Bladder 

G:C to T:A; 

A:T to G:C 
(91) 

G:C to T:A (90) 

G:C to T:A (92) 
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1. ROS AND p53  

The innate immune response in the exposure 

to heavy metals is producing ROS such as 

hydroxyl radical (˙OH), superoxide anion (O2‾), 

and peroxynitrite (ONOO–) (29). The radical 

hydroxyl possesses a potential danger for 

genomic instability through the mutation in 

purine, pyrimidine, as well as the sugar 

backbone (30). 

The effect of ROS on p53 can be destructive; 

structural integrity, and therefore, the activity of 

p53 is affected by ROS because it is a redox-

sensitive protein (31). The ten cysteines involved 

in the binding of the protein to the DNA, make 

p53 sensitive to ROS (32). The binding of 

cysteine to metals, nitrosylation, 

glutathionylation, and oxidation formation by 

ROS, destroy the p53 protein function (33). The 

p53 conformational changes are induced by the 

creation of an oxidation-induced electron-hole. 

These structural changes occur in DNA-bound 

p53 protein (34, 35). 

It has also been shown that reactive species 

may cause various damages to DNA, the most 

common of which is guanine damage that led to 

breaks in DNA strands and DNA–protein 

crosslinks. Guanine damage inhibits the 

replication and transcription, which is mutagenic 

(36). 

 

2. Arsenic 

The arsenic carcinogenic potential has been 

proven in cancers such as skin and lung cancers 

(37, 38). ROS plays an essential role in arsenic-

induced toxicity in humans. In arsenic-related 

skin cancers, G:C to T:A; G:C to C:G; C:G to 

G:C; A:T to C:G, and A:T to T:A is observed in 

Tp53 (39). 

In addition, arsenic can alter protein 

expression by decreasing DNA methylation 

(40). Arsenic, through a mechanism dependent 

on the methyltransferase/S-Adenosyl 

methionine (MTase/SAM) pathway, modulates 

the DNA methylation of the tumor suppressor 

genes. In this pathway, the methylation of DNA 

is dependent on the dose of arsenic. Thus, high 

and low doses of arsenic cause hypomethylation 

and hypermethylation, respectively. DNA 

methyltransferase (DNMTs) is an enzyme that 

participates in DNA methylation, which in 

collaboration with SAM (the methyl group 

donor), transfers a methyl group to carbon atom 

that is located at position 5 of the cytosine 

nucleobase. The low arsenic concentration by 

inhibition of DNMTs increases SAM levels, 

which result in high cytosine methylation, hence, 

hypermethylation will occur. So the tumor 

suppressor gene expression will be suppressed 

(40). Genomic instability increases with the loss 

of tumor suppressor activity, and thus, the 

suppression of the cell cycle checkpoint control 

(41). Therefore, low-dose arsenic can make 

people more susceptible to cancer. In a report 

from smelter workers, it has been shown that 

people who were exposed to low doses of arsenic 

show more cancer cases than those who were 

exposed to high doses (42). 

High concentrations of arsenic can reduce the 

methyl groups, which are essential for SAM 

activity. This methyl group reduction is through 

the arsenite MTase enzyme that consumes them. 

So SAM levels decrease, which results in low 

cytosine methylation. This pathway ultimately 

leads to genomic hypomethylation. This 

hypomethylation also leads to increased 

chromosome fragility and genomic instability, 

and ultimately, cancer (40). 

 

3. Copper 

Copper is one of the metals that play a role in 

the formation of hydroxyl radicals (˙OH), as well 

as membrane lipid peroxidation. Copper acts as 

a catalyst for the production of these two agents 

(43). In most tumors, like the bacterial DNA that 

is exposed to copper, C → T transitions are often 

observed (44). Several mutations associated with 

copper toxicity have been observed in the liver 

of patients with Wilson's disease, such that 

mutations included transversions and 

transversions such as G:C to T:A at codon 249; 

C:G to A:T and C:G to T:A at codon 250 (27). 

P53 activity can also  be affected by copper so 

that zinc cation (Zn2+) in the p53 structure is 

displaced by cuprous ion (Cu+), therefore, p53 

loses its activity by changing the conformation 

(45). 

 

4. Iron 

Iron is one of the most important metals that 

many biological processes, such as respiration, 

require iron (46). Hydroxyl radicals are formed 

by iron exposure, which results in DNA damage 

(44). In a study on colon cells, single-stranded 

mutations were observed for p53 in cells with 

iron overload (47). Ferritin and Hemin are two 

important molecules that prevent oxidative 
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damage by binding to the p53, and thus, prevent 

its loss of conformation (48, 49). Transcription 

factors such as neuronal PAS domain protein 2 

(NPAS2) receive redox signaling by a hemin 

signaling molecule (50). P53 degradation, 

nuclear exports, and p53 -DNA binding are 

facilitated through this signaling by the 

mediation of hemin (48). 

In a study on liver tissue samples in patients 

with Wilson's disease or hemochromatosis, 

transversion at 240 and 250 codons with G:C to 

T:A, C:G to A:T, and C:G to T:A was observed, 

respectively (51). They have shown that the risk 

of liver cancer increases with reactive oxygen-

producing, especially Nitric oxide synthase 2 

(NOS-2) (52). Also, transition mutations, 

especially G:C to A:T, have been observed in 

colorectal neoplasms, which are produced by 

increasing NOS-2 levels (53, 54). 

 

5. Cadmium 

Cadmium is a toxic metal that has a 

genotoxicity effect through the production and 

enhancement of ROS amount and subsequent 

DNA damage (55, 56). There is also evidence 

that p53 needs to bind zinc to fold and function 

correctly. However, cadmium can be displaced 

by zinc. This displacement changes the p53 

tumor suppressor conformation and function 

(57). It has also been shown that the cell cycle is 

arrested in G1 and G2/M phases by cadmium 

exposure. A study proposed that the suppression 

of the cell cycle in human breast cancer (MCF-7 

cells) was due to conformational changes of p53 

zinc finger domain that results in altered protein 

function, and consequently, inhibits its binding 

to DNA (57, 58). 

A study showed that the apoptotic pathways 

could be influenced by cadmium, and the 

interaction of cadmium for cellular proliferation 

pathways was also identified (59). The same 

study reported that the expression of some genes, 

including tumor suppressor genes (also p53), the 

caspase family protease encoding genes, and 

some apoptotic pathway regulators such as 

BCL2-associated X protein (BAX), decreased. It 

was also shown that the anti-apoptotic B-cell 

lymphoma 2 (Bcl-2) gene expression is 

increased in cells exposed to cadmium (55). 

It is shown that the concentration of this 

metal is higher in the cigarette. Therefore, one of 

the common causes of p53 gene mutations in 

smokers is cadmium exposure. It is shown that 

mutation of G:C to T:A  is the most common 

mutation in these people (60).  

 

6. Nickel 

Nickel is one of the metals found in the 

environment, especially in soil and sediment. 

Nickel adsorption, which is usually carried out 

only through contaminated food and water, can 

lead to negative reactions in people (61). 

Creating allergic inflammation such as asthma or 

shortness of breath is the included effect of 

nickel use (62).  In addition, studies have also 

shown that nickel plays an important role in 

several types of cancer such as lung and nose 

(63-66). 

Experimental studies have reported that 

multiple  molecular mechanisms have played a 

role in nickel-induced carcinogenicity (62). 

Nickel compounds can induce both direct and 

indirect DNA damage. In direct DNA damage, 

nickel enters the nucleus  that leads to the 

formation of reactive nickel-oxygen complexes 

by binding to DNA and reacting with hydrogen 

peroxide (H2O2) (67, 68). The productions of 

these compounds are the oxidized form of 

thymine and cytosine  accompanied by 8-OH-dG 

formation (67). Extreme DNA damage, as well 

as inhibition of its repair pathways, are generated 

by oxidative stress (69). Indirect DNA damage is 

induced by ROS production (70, 71). In kidney 

epithelial cells exposed to nickel, a T→C 

transition point mutation in the p53 gene at 

codon 238 has been observed (72, 73). In another 

study, high levels of 8-oxo-dG were reported 

with the mutation of G:C to T:A in lung cancer 

(74). 

 

Prevalence of p53 mutation in India, 

Pakistan, and Iran with a similar food basket 

The presence of metals in the soil and water 

causes problems for all organisms (75) and 

endangers human health by bioaccumulation in 

the food chain (76-79). In recent decades, the 

increased use of different industrial products 

such as chemical dyes, metals and the economic 

development of industries such as cement, 

petrochemicals, energy, and others has 

contributed to surface water and underground 

water pollution in Pakistan. The imbalance of 

economic and social growth in the recent decade 

has caused environmental challenges in Pakistan 

(80). Environmental pollution by metals 

(including soil, water, sediment, and rice 
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samples) of central India is reported. The total 

heavy metals concentration, such as arsenic and 

other elements (i.e., iron, nickel, copper, etc.) in 

the samples, like water, soil, sediment, and rice 

grain were higher than the standard levels (81-

83). Heavy metals contamination, also affects 

the environmental samples (i.e. water, soil, dust, 

food, etc.) in Pakistan (79, 84, 85). 

Environmental factors, like exposure to heavy 

metals, predict cancer development (76, 86). As 

a large part of the Iranian food basket containing 

Hindi and Pakistani grain products, especially 

rice, it seems that some of the similarities of 

common mutations in these three areas are the 

result of this case. 

In Table 2, similar mutations  in these three 

areas are arranged; and the possible association 

of these mutations with heavy metals in the food 

basket has been studied. 

 

Table 2. Mutations of p53 by metals 

Codon Intron/Exon 
Nucleotide 

Change 

Amino Acid 

Change 
Iran India Pakistan Metal References 

146 Ex5 TGG→ TGA Trp→ Stop + + - 

Copper; 

Iron; 

Zinc; 
Arsenic 

(93, 94) 

214 Ex6 CAT→ CGT His→ Arg + + - Arsenic (60, 94) 
220 Ex6 TAT→ TGT Tyr→ Cys + + + Arsenic (94-96) 

248 Ex7 CGG→ CAG Arg→ Gln + + + 

Copper; 

Iron; 
Zinc; 

Arsenic 

(60, 94, 96, 97) 

248 Ex7 CGG→ TGG Arg→ Try + + + 
Copper; 
Arsenic 

(93, 97, 98) 

249 Ex7 AGG→ AGT Arg→ Ser + + - 

Cadmium; 

Arsenic; 
Nickel; 

Copper 

(99, 100) 

273 Ex8 CGT→ CAT Arg→ His + + + 

Copper; 

Iron; 

Zinc; 
Arsenic 

(60, 94, 96, 97) 

 

Conclusion  

Heavy metals induce P53 damages by three 

potential mechanisms. At high concentrations of 

heavy metals, the formation of ROS induces 

mutations in the P53 gene. However, some metals 

at lower concentrations are more damaging. For 

example, P53 protein expression, at low 

concentrations of arsenic, is affected by reducing 

DNA methylation. In another way, in some heavy 

metals such as copper, the zinc in the p53 protein 

is displaced with the copper, and then, unfolds it. 

 The study of the similar patterns of P53 

mutations in different countries and finding the 

causes of the similarity of P53 mutations 

occurrence plays an important role in reducing 

p53 mutations and increasing public health. A 

recent study has shown that the p53 mutation 

patterns in some codons were similar in Iran, 

India, and Pakistan, so that the same heavy 

metals-contaminated food basket, like crops can 

be the reason for these similarities. However, 

further studies are needed to find out the 

relationship between heavy metals concentration 

in foods like crops and the occurrence of similar 

mutagenic patterns in P53. 
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