Document Type : Review Article

Authors

1 Department of Biostatistics and Epidemiology, Kerman University of Medical Sciences, Kerman, Iran & Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

2 Department of Biostatistics and Epidemiology, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Background: Bayesian mixture cure rate frailty model is a model used in survival analysis by controlling frailty when the fraction of cured individuals exists. The present study was performed as the first systematic review in survival analysis with cure fraction. The aim of this systematic review was to study and evaluate the related studies on Bayesian mixture cure rate frailty model. Also, this model was used to demonstrate its importance and applicability in determining the variables affecting the survival of patients with gastric cancer.
Methods: This systematic review was done based on the PRISMA guideline by considering related searching keywords in PubMed, Scopus, Science Direct, Web of Science, and Google Scholar. Also, Bayesian mixture cure rate frailty model was used to analyze gastric cancer data.
Results: In the beginning, 882 studies related to survival analysis of cure rate model were found. Finally, by reading the full-text, only 4 related studies were found based on the inclusion and exclusion criteria. In these studies, semi-parametric models and parametric model with Weibull distribution were used for time-to-event data. Also, based on the results of the model, significant and affective variables on the survival of patients with gastric cancer were found.
Conclusion: According to the results of this study, in the cure model, choice of proper distribution for the frailty variable and baseline distribution can influence the results. It was also found that place of residence, chemotherapy, morphology, and metastasis are effective variables on survival of patients with gastric cancer.

Keywords

  1. Cancho VG, de Castro M, Rodrigues J. A bayesian analysis of the conway-maxwell-poisson cure rate model. Stat Pap. 2012; 53(1):165-76. doi: 1007/s00362-010-0326-5.
  2. Hoseini M, Bahrampour A, Mirzaee M. Comparison of weibull and lognormal cure models with cox in the survival analysis of breast cancer patients in Rafsanjan. J Res Health Sci. 2017; 17(1): e00369. PMID: 28413171.
  3. Martinez EZ, Achcar JA, Jácome AA, Santos JS. Mixture and non-mixture cure fraction models based on the generalized modified Weibull distribution with an application to gastric cancer data. Comput Methods Programs Biomed. 2013; 112(3):343-55. doi: 10.1016/j.cmpb.2013.07.021.
  4. Wienke A, Lichtenstein P, Yashin AI. A bivariate frailty model with a cure fraction for modeling familial correlations in diseases. Biometrics. 2003; 59(4):1178-83. doi: 10.1111/j.0006-341x. 2003.00135.x.
  5. Lambert PC, Thompson JR, Weston CL, Dickman PW. Estimating and modeling the cure fraction in population-based cancer survival analysis. Biostatistics. 2007; 8(3):576-94. doi: 10.1093/biostatistics/kxl030.
  6. Kim S, Chen MH, Dey DK, Gamerman D. Bayesian dynamic models for survival data with a cure fraction. Lifetime Data Anal. 2007; 13(1):17-35. doi: 10.1007/s10985-006-9028-7.
  7. Othus M, Barlogie B, LeBlanc ML, Crowley JJ. Cure models as a useful statistical tool for analyzing survival. Clin Cancer Res. 2012; 18(14): 3731-6. doi: 10.1158/1078-0432.CCR-11-2859.
  8. Chen M, Ibrahim JG. Bayesian inference for multivariate survival data with a cure fraction. J Multivar Anal. 2002; 80(1):101-26. doi: 10.1006/
    2000.1975.
  9. De Angelis R, Capocaccia R, Hakulinen T, Soderman B, Verdecchia A. Mixture models for cancer survival analysis: application to population-based data with covariates. Stat Med. 1999; 18(4):441-54. doi: 10.1002/(sici)1097-0258
    (19990228)18:4<441: aid-sim23>3.0.co;2-m.
  10. Achcar JA, Coelho-Barros EA, Mazucheli J. Cure fraction models using mixture and non-mixture models. Tatra Mt Math Publ. 2012; 51(1):1-9. doi: 10.2478/v10127-012-0001-4.
  11. Chen MH, Ibrahim JG, Sinha D. A new Bayesian model for survival data with a surviving fraction. J Am Statistic Assoc. 1999; 94(447):909-19. doi: 10.1080/01621459.1999.10474196.
  12. Nikaeen R, Khalilian A, Bahrampour A. Determining the Effective Factors on Gastric Cancer Using Frailty Model in South-East and North of Iran. Iran J Health Sci. 2017; 5(3):35-48. doi: 29252/jhs.5.3.35.
  13. de Souza D, Cancho VG, Rodrigues J, Balakrishnan N. Bayesian cure rate models induced by frailty in survival analysis. Stat Methods Med Res. 2017; 26(5):2011-28. doi: 1177/0962280217708671.
  14. Yin G. Bayesian cure rate frailty models with application to a root canal therapy study. Biometrics. 2005; 61(2):552-8. doi: 10.1111/j.1541-2005.040336.x.
  15. Ata N, Ozel G. Survival functions for the frailty models based on the discrete compound poisson process. J Stat Comput Simul. 2013; 83(11):1-12. doi: 1080/00949655.2012.679943.
  16. Balakrishnan N, Peng Y. Generalized gamma frailty model. Stat Med. 2006; 25(16):2797-816. doi: 10.1002/sim.2375.
  17. Yin G. Bayesian transformation cure frailty models with multivariate failure time data. Stat Med. 2008; 27(28):5929-40. doi: 10.1002/sim. 3371. 
  18. de Castro M, Cancho VG, Rodrigues J. A Bayesian long-term survival model parametrized in the cured fraction. Biom J. 2009; 51(3):443-55. doi: 10.1002/bimj.200800199.
  19. Seltman H, Greenhouse J, Wasserman L. Bayesian model selection: analysis of a survival model with a surviving fraction. Stat Med. 2001; 20(11):1681-91. doi: 10.1002/sim.779.
  20. Cowles MK, Carlin BP. Markov chain monte carlo convergence diagnostics: a comparative review. J Am Stat Assoc. 1996; 91(434):883-904. doi: 10.1080/01621459.1996.10476956.
  21. Cancho VG, Rodrigues J, de Castro M. A flexible model for survival data with a cure rate: A Bayesian approach. J Appl Stat. 2011; 38(1):57-70. doi: 10.1080/02664760903254052.
  22. Tsodikov AD, Ibrahim JG, Yakovlev AY. Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc. 2003; 98(464):1063-1078. doi: 10.1198/01622145030000001007.
  23. Ahn E, Kang H. Introduction to systematic review and meta-analysis. Korean J Anesthesiol. 2018; 71(2):103-112. doi: 10.4097/kjae.2018.71.2.103.
  24. Barza M, Trikalinos TA, Lau J. Statistical considerations in meta-analysis. Infect Dis Clin North Am. 2009; 23(2):195-210, Table of Contents. doi: 10.1016/j.idc.2009.01.003.
  25. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015; 162(11):777-84. doi: 10. 7326/M14-2385. 
  26. Cancho VG, Zavaleta KEC, Macera MAC, Suzuki AK, Louzada F. A Bayesian cure rate model with dispersion induced by discrete frailty. Commun Stat Appl Methods. 2018; 25(5):471-88. doi:29220/CSAM.2018.25.5.471.
  27. Lam KF, Wong KY, Zhou F. A semiparametric cure model for interval-censored data. Biom J. 2013; 55(5):771-88. doi: 10.1002/bimj.201300004.
  28. Rodrigues J, Cancho VG, de Castro M, Balakrishnan N. A Bayesian destructive weighted Poisson cure rate model and an application to a cutaneous melanoma data. Stat Methods Med Res. 2012; 21(6):585-97. doi: 10.1177/0962280210391443.
  29. Crumer AM. Comparison between weibull and cox proportional hazards models. MA thesis Kansas State University Manhattan, Kansas; 2008.
  30. Riker AI, Zea N, Trinh T. The epidemiology, prevention, and detection of melanoma. Ochsner J. 2010; 10(2):56-65. PMID: 21603359.
  31. Saez-Castillo AJ, Conde-Sanchez A. A hyper-Poisson regression model for overdispersed and underdispersed count data. Comput Stat Data An. 2013; 61:148-57. doi: 10.1016/j.csda.2012.12.009.
  32. Rahimzadeha M, Hajizadeha E, Eskandarib F. Non-mixture cure correlated frailty models in bayesian approach. J Appl Stat. 2011; 38(8):1651-63. doi: 10.1080/02664763.2010.515966
  33. Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, et al. Metastatic patterns in adenocarcinoma. Cancer. 2006; 106(7):1624-33. doi: 10.1002/cncr.21778.
  34. DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res. 2008; 68(21):8643-53. doi: 10.1158/0008-5472.CAN-07-6611.
  35. Sastre J, Garcia-Saenz JA, Diaz-Rubio E. Chemotherapy for gastric cancer. World J Gastroenterol. 2006 Jan 14; 12(2):204-13. doi: 10.3748/wjg.v12.i2.204.
  36. Khorfan R, Schlick CJR, Yang AD, Odell DD, Bentrem DJ, Merkow RP. Utilization of minimally invasive surgery and its association with chemotherapy for locally advanced gastric cancer. J Gastrointest Surg. 2020; 24(2):243-252. doi: 10.1007/s11605-019-04410-x. 
  37. Zali H, Rezaei-Tavirani M, Azodi M. Gastric cancer: prevention, risk factors and treatment. Gastroenterol Hepatol Bed Bench.  2011; 4(4):175-85. PMID: 24834180.
  38. Dicken BJ, Bigam DL, Cass C, Mackey JR, Joy AA, Hamilton SM. Gastric adenocarcinoma: review and considerations for future directions. Ann Surg. 2005; 241(1):27-39. doi: 10.1097/01. sla.0000149300.28588.23.