Advances in Stem Cell Therapy Based on Tissue Engineering in the Treatment of Female Infertility with a Focus on POF

Document Type : Review Article

Authors

1 Deptartement of Anatomy, Faculty o Medecine, Social Development & Health Promotion Research Center, Gonabad University of MedicalScience, Gonabad, Iran

2 School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran & Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran

3 Department of Anatomy, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

4 Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran

5 Department of Physiology, Faculty of Medicine, Social Development & Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran

6 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Background: In the last few decades, many studies have been done on the treatment of premature ovarian failure. This review was conducted to study different types of treatment with a focus on the 3D culture model of stem cells as a pluripotent source for repairment in regenerative medicine for this disease in recent decades.
Methods: To conduct this review, electronic databases of MEDLINE, Scopus, PubMed, and Web of Science were searched using MeSH terms. Only English articles were included, and case reports were excluded. The keywords used for the search were mentioned as the keywords of the paper.
Results: To transplant the stem cells into the patient's body, the 3D culture of these cells in vitro and the molecular and cellular aspects of these cells were considered, andtheir success rate and differentiation were compared to granulosa cells or oocytes.
Conclusion: The present study aimed to discuss the potential effects of stem cells for regeneration and recovery of ovarian function in premature ovarian failure as a useful therapy.

Keywords


  1. Sukcharoen N. Premature ovarian failure. Thai Journal of Obstetrics and Gynaecology. 2020; 14:169-75.
  2. Davis SR, Premature ovarian failure. Maturitas. 1996; 23(1):1-8. doi: 10.1016/0378-5122(95)00966-3.
  3. Arora P, Polson DW.  Diagnosis and management of premature ovarian failure. The Obstetrician & Gynaecologist. 2011; 13(2):67-72. doi: 10.1576/toag.13.2.67.27648.
  4. Goswami D, Conway GS. Premature ovarian failure. Hormone Research in Paediatrics. 2007; 68(4):196-202. doi: 10.1159/000102537.
  5. Jungari SB, Chauhan BG. Prevalence and Determinants of Premature Menopause among Indian Women: Issues and Challenges Ahead. Health Soc Work. 2017; 42(2):79-86. doi: 10.1093/hsw/hlx010.
  6. Sobinoff AP, Sutherland JM, Beckett EL, Stanger SJ, Johnson R, Jarnicki AG, et al. Damaging legacy: maternal cigarette smoking has long-term consequences for male offspring fertility. Hum Reprod. 2014; 29(12):2719-35. doi: 10.1093/humrep/deu235.
  7. Ghahremani-Nasab M, Ghanbari E, Jahanbani Y, Mehdizadeh A, Yousefi M. Premature ovarian failure and tissue engineering. J Cell Physiol. 2020; 235(5):4217-26. doi: 10.1002/jcp.29376.
  8. Beck-Peccoz P, Persani L. Premature ovarian failure. Orphanet J Rare Dis. 2006; 1:9. doi: 10.1186/1750-1172-1-9.
  9. Bines J, Oleske DM, Cobleigh MA. Ovarian function in premenopausal women treated with adjuvant chemotherapy for breast cancer. J Clin Oncol. 1996; 14(5):1718-29. doi: 10.1200/JCO.1996.14.5.1718.
  10. Bukovsky A. Novel methods of treating ovarian infertility in older and POF women, testicular infertility, and other human functional diseases. Reprod Biol Endocrinol. 2015; 13:10. doi: 10.1186/s12958-015-0001-8.
  11. Kovanci E, Schutt AK. Premature ovarian failure: clinical presentation and treatment. Obstet Gynecol Clin North Am. 2015; 42(1):153-61. doi: 10.1016/j.ogc.2014.10.004.
  12. Bines J, Oleske DM, Cobleigh MA. Ovarian function in premenopausal women treated with adjuvant chemotherapy for breast cancer. J Clin Oncol. 1996; 14(5):1718-29. doi: 10.1200/JCO.1996.14.5.1718.
  13. McGuire MM, Bowden W, Engel NJ, Ahn HW, Kovanci E, Rajkovic A. Genomic analysis using high-resolution single-nucleotide polymorphism arrays reveals novel microdeletions associated with premature ovarian failure. Fertil Steril. 2011; 95(5):1595-600. doi: 10.1016/j.fertnstert.2010.12.052.
  14. Conway GS. Premature ovarian failure. British Medical Bulletin. 2000; 56(3):643-9. doi: 10.1258/0007142001903445.
  15. Chapman C, Cree L, Shelling AN. The genetics of premature ovarian failure: Current perspectives. Int J Womens Health. 2015; 7:799-810. doi: 10.2147/IJWH.S64024.
  16. Kalantaridou SN, Davis SR, Nelson LM. Premature ovarian failure. Endocrinol Metab Clin North Am. 1998; 27(4):989-1006. doi: 10.1016/s0889-8529(05)70051-7.
  17. Meskhi A, Seif MW. Premature ovarian failure. Curr Opin Obstet Gynecol. 2006; 18(4):418-26. doi: 10.1097/01.gco.0000233937.36554.d3.
  18. Janicki SC, Schupf N. Hormonal influences on cognition and risk for Alzheimer's disease. Curr Neurol Neurosci Rep. 2010; 10(5):359-66. doi: 10.1007/s11910-010-0122-6.
  19. Muka T, Nano J, Jaspers L, Meun C, Bramer WM, Hofman A, et al. Associations of steroid sex hormones and sex hormone-binding globulin with the risk of type 2 diabetes in women: A population-based cohort study and meta-analysis. Diabetes. 2017; 66(3):577-86. doi: 10.2337/db16-0473.
  20. Muka T, Oliver-Williams C, Kunutsor S, Laven JS, Fauser, BC, Chowdhury R, et al. Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality. JAMA Cardiology. 2016; 1(7), 767-76.
  21. Sinha P, Kuruba N. Premature ovarian failure. J Obstet Gynaecol. 2007; 27(1):16-9. doi: 10.1080/01443610601016685.
  22. Ebrahimi M, Akbari Asbagh F. Pathogenesis and causes of premature ovarian failure: An update. Int J Fertil Steril. 2011; 5(2):54-65. PMID: 24963360.
  23. Sonmezer M, Oktay K. Fertility preservation in female patients. Hum Reprod Update. 2004; 10(3):251-66. doi: 10.1093/humupd/dmh021.
  24. Rebar RW. Premature ovarian failure. Obstet Gynecol. 2009; 113(6):1355-63. doi: 10.1097/AOG.0b013e3181a66843. 
  25. Ramirez JM, Rodriguez FA, Echeverria MI, Vargas AL, Calderon AE, Miatello RM, Renna NF. SHOX duplication and tall stature in a patient with Xq deletion and vascular disease. Case Rep Gene 2019; 2019: 2691820. doi: 10.1155/2019/2691820.
  26. Tran TN, Schimenti JC. A segregating human allele of SPO11 modeled in mice disrupts timing and amounts of meiotic recombination, causing oligospermia and a decreased ovarian reserve†. Biol Reprod. 2019; 101(2):347-59. doi: 10.1093/biolre/ioz089.
  27. Inagaki A, Schoenmakers S, Baarends WM. DNA double strand break repair, chromosome synapsis and transcriptional silencing in meiosis. Epigenetics. 2010; 5(4):255-66. doi: 10.4161/epi.5.4.11518.
  28. May-Panloup P, Chretien MF, Malthiery Y, Reynier P. Mitochondrial DNA in the oocyte and the developing embryo. Curr Top Dev Biol. 2007; 77:51-83. doi: 10.1016/S0070-2153(06)77003-X.
  29. Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and developmental potential and outcome after In Vitro fertilization and embryo transfer. Hum Reprod. 1995; 10(2):415-24. doi: 10.1093/oxfordjournals.humrep.a135954.
  30. Jankowska K. Premature ovarian failure. Prz Menopauzalny. 2017; 16(2):51-6. doi: 10.5114/pm.2017.68592.
  31. May-Panloup P, Chrétien MF, Jacques C, Vasseur C, Malthièry Y, Reynier P. Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod. 2005; 20(3):593-7. doi: 10.1093/humrep/deh667.
  32. Yazdekhasti H, Hosseini MA, Rajabi Z, Parvari S, Salehnia M, Koruji M, et al. Improved isolation, proliferation, and differentiation capacity of mouse ovarian putative stem cells. Cell Reprogram. 2017; 19(2):132-44. doi: 10.1089/cell.2016.0054.
  33. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004; 428(6979):145-50. doi: 10.1038/nature02316.
  34. Bukovsky A, Gupta SK, Virant-Klun I, Upadhyaya NB, Copas P, Van Meter SE, et al. Study origin of germ cells and formation of new primary follicles in adult human and rat ovaries. Methods Mol Biol. 2008; 450:233-65. doi: 10.1007/978-1-60327-214-8_16.
  35. Bukovsky A. Ovarian stem cell niche and follicular renewal in mammals. Anat Rec (Hoboken). 2011; 294(8):1284-306. doi: 10.1002/ar.21422.
  36. Bui HT, Van Thuan N, Kwon DN, Choi YJ, Kang MH, Han JW, et al. Identification and characterization of putative stem cells in the adult pig ovary. Development. 2014; 141(11):2235-44. doi: 10.1242/dev.104554.
  37. Khosravi-Farsani S, Amidi F, Habibi Roudkenar M, Sobhani A. Isolation and enrichment of mouse female germ line stem cells. Cell J. 2015; 16(4):406-15. doi: 10.22074/cellj.2015.487.
  38. Yazdekhasti H, Rajabi Z, Parvari S, Abbasi M. Used protocols for isolation and propagation of ovarian stem cells, different cells with different traits. J Ovarian Res. 2016; 9:68. doi: 10.1186/s13048-016-0274-3.
  39. Peng Q, Qin J, Zhang Y, Cheng X, Wang X, Lu W, et al. Autophagy maintains the stemness of ovarian cancer stem cells by FOXA2. J Exp Clin Cancer Res. 2017; 36:171. doi: 10.1186/s13046-017-0644-8.
  40. Parte SC, Batra SK, Kakar SS. Characterization of stem cell and cancer stem cell populations in ovary and ovarian tumors. J Ovarian Res. 2018; 11(1):69. doi: 10.1186/s13048-018-0439-3.
  41. Witt AE, Lee CW, Lee TI, Azzam DJ, Wang B, Caslini C, et al. Identification of a cancer stem cell-specific function for the histone deacetylases, HDAC1 and HDAC7, in breast and ovarian cancer. Oncogene. 2017; 36(12):1707-20. doi: 10.1038/onc.2016.337.
  42. Kenda Suster N, Virant-Klun I. Presence and role of stem cells in ovarian cancer. World J Stem Cells. 2019; 11(7):383-97. doi: 10.4252/wjsc.v11.i7.383.
  43. Ye H, Zheng T, Li W, Li X, Fu X, Huang Y, et al. Ovarian stem cell nests in reproduction and ovarian aging. Cell Physiol Biochem. 2017; 43(5):1917-25. doi: 10.1159/000484114.
  44. Parte S, Virant-Klun I, Patankar M, Batra SK, Straughn A, Kakar SS. PTTG1: A unique regulator of stem/cancer stem cells in the ovary and ovarian cancer. Stem Cell Rev Rep. 2019; 15(6):866-79. doi: 10.1007/s12015-019-09911-5.
  45. Virant-Klun I, Skerl P, Novakovic S, Vrtacnik-Bokal E, Smrkolj S. Similar population of CD133 + and DDX4 + VSEL-like stem cells sorted from human embryonic stem cell, ovarian, and ovarian cancer ascites cell cultures: The real embryonic stem cells? Cells. 2019; 8(7):706. doi: 10.3390/cells8070706.
  46. Kim WT, Ryu CJ. Cancer stem cell surface markers on normal stem cells. BMB Rep. 2017; 50(6):285-98. doi: 10.5483/bmbrep.2017.50.6.039.
  47. Noory P, Navid S. Premature ovarian failure treatments: A review study with focus on stem cell therapy as pluripotent source for repairment in regenerative medicine. Austin Med Sci. 2018; 3(2):1027.
  48. Noory P, Navid S, Zanganeh BM, Talebi A, Borhani-Haghighi M, Gholami K, et al. Human menstrual blood stem cell-derived granulosa cells participate in ovarian follicle formation in a rat model of premature ovarian failure In Vivo. Cell Reprogram. 2019; 21(5):249-59. doi: 10.1089/cell.2019.0020.
  49. Manshadi MD, Navid S, Hoshino Y, Daneshi E, Noory P, Abbasi M. The effects of human menstrual blood stem cells-derived granulosa cells on ovarian follicle formation in a rat model of premature ovarian failure. Microsc Res Tech. 2019; 82(6):635-42. doi: 10.1002/jemt.23120.
  50. Sheikhansari G, Aghebati-Maleki L, Nouri M, Jadidi-Niaragh F, Yousefi M. Current approaches for the treatment of premature ovarian failure with stem cell therapy. Biomed Pharmacother. 2018; 102:254-62. doi: 10.1016/j.biopha.2018.03.056.
  51. Gargett CE. Stem cells in gynaecology. Aust N Z J Obstet Gynaecol. 2004; 44(5):380-6. doi: 10.1111/j.1479-828X.2004.00290.x.
  52. Lai D, Wang F, Dong Z, Zhang Q. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model. PLoS One. 2014; 9(5):98749. doi: 10.1371/journal.pone.0098749.
  53. Liu T, Li Q, Wang S, Chen C, Zheng J. Transplantation of ovarian granulosa‑like cells derived from human induced pluripotent stem cells for the treatment of murine premature ovarian failure. Mol Med Rep. 2016; 13(6):5053-8. doi: 10.3892/mmr.2016.5191.
  54. He Y, Chen D, Yang L, Hou Q, Ma H, Xu X. The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem Cell Res Ther. 2018; 9(1):263. doi: 10.1186/s13287-018-1008-9.
  55. Henningson CT Jr, Stanislaus MA, Gewirtz AM. Embryonic and adult stem cell therapy. J Allergy Clin Immunol. 2003; 111(2):745-53. doi: 10.1067/mai.2003.133.
  56. Gargett CE. Identification and characterisation of human endometrial stem/progenitor cells. Aust N Z J Obstet Gynaecol. 2006; 46(3):250-3. doi: 10.1111/j.1479-828X.2006.00582.x.
  57. Woods DC, White YA, Niikura Y, Kiatpongsan S, Lee HJ, Tilly JL. Embryonic stem cell-derived granulosa cells participate in ovarian follicle formation In Vitro and in vivo. Reprod Sci. 2013; 20(5):524-35. doi: 10.1177/1933719113483017.
  58. Liu T, Huang Y, Guo L, Cheng W, Zou G. CD44+/CD105+ human amniotic fluid mesenchymal stem cells survive and proliferate in the ovary long-term in a mouse model of chemotherapy-induced premature ovarian failure. Int J Med Sci. 2012; 9(7):592-602. doi: 10.7150/ijms.4841.
  59. Sun M, Wang S, Li Y, Yu L, Gu F, Wang C, et al. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Res Ther. 2013; 4(4):80. doi: 10.1186/scrt231.
  60. Liu T, Huang Y, Zhang J, Qin W, Chi H, Chen J, et al. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev. 2014; 23(13):1548-57. doi: 10.1089/scd.2013.0371.
  61. Wang Z, Wang Y, Yang T, Li J, Yang X. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Res Ther. 2017; 8(1):11. doi: 10.1186/s13287-016-0458-1.
  62. Lai D, Wang F, Yao X, Zhang Q, Wu X, Xiang C. Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure. J Transl Med. 2015; 13:155. doi: 10.1186/s12967-015-0516-y.
  63. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, et al. A population of very small embryonic-like (VSEL) CXCR4(+) SSEA-1(+) Oct-4+ stem cells identified in adult bone marrow. Leukemia. 2006; 20(5):857-69. doi: 10.1038/sj.leu.2404171.
  64. Barry FP, Murphy JM. Mesenchymal stem cells: Clinical applications and biological characterization. Int J Biochem Cell Biol. 2004; 36(4):568-84. doi: 10.1016/j.biocel.2003.11.001.
  65. Elfayomy AK, Almasry SM, El-Tarhouny SA, Eldomiaty MA. Human umbilical cord blood-mesenchymal stem cells transplantation renovates the ovarian surface epithelium in a rat model of premature ovarian failure: Possible direct and indirect effects. Tissue Cell. 2016; 48(4):370-82. doi: 10.1016/j.tice.2016.05.001.
  66. Waller EK, Olweus J, Lund-Johansen F, Huang S, Nguyen M, Guo GR, Terstappen L. The "common stem cell" hypothesis reevaluated: Human fetal bone marrow contains separate populations of hematopoietic and stromal progenitors. Blood. 1995; 85(9):2422-35. PMID: 7537114.
  67. Li J, Mao Q, He J, She H, Zhang Z, Yin C. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Res Ther. 2017; 8(1):55. doi: 10.1186/s13287-017-0514-5.
  68. Song D, Zhong Y, Qian C, Zou Q, Ou J, Shi Y, et al. Human umbilical cord mesenchymal stem cells therapy in cyclophosphamide-induced premature ovarian failure rat model. Biomed Res Int. 2016; 2016:2517514. doi: 10.1155/2016/2517514.
  69. Chen X, Wang Q, Li X, Wang Q, Xie J, Fu X. Heat shock pretreatment of mesenchymal stem cells for inhibiting the apoptosis of ovarian granulosa cells enhanced the repair effect on chemotherapy-induced premature ovarian failure. Stem Cell Res Ther. 2018; 9(1):240. doi: 10.1186/s13287-018-0964-4.
  70. Zhang H, Luo Q, Lu X, Yin N, Zhou D, Zhang L, et al. Effects of hPMSCs on granulosa cell apoptosis and AMH expression and their role in the restoration of ovary function in premature ovarian failure mice. Stem Cell Res Ther. 2018; 9(1):20. doi: 10.1186/s13287-017-0745-5.
  71. Wang Z, Wei Q, Wang H, Han L, Dai H, Qian X, et al. Mesenchymal stem cell therapy using human umbilical cord in a rat model of autoimmune-induced premature ovarian failure. Stem Cells Int. 2020; 2020:3249495. doi: 10.1155/2020/3249495.
  72. Lu X, Cui J, Cui L, Luo Q, Cao Q, Yuan W, et al. The effects of human umbilical cord-derived mesenchymal stem cell transplantation on endometrial receptivity are associated with Th1/Th2 balance change and uNK cell expression of uterine in autoimmune premature ovarian failure mice. Stem Cell Res Ther. 2019; 10(1):214. doi: 10.1186/s13287-019-1313-y.
  73. Badawy A, Sobh MA, Ahdy M, Abdelhafez MS. Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. Int J Womens Health. 2017; 9:441-7. doi: 10.2147/IJWH.S134074.
  74. Xiao GY, Cheng CC, Chiang YS, Cheng WT, Liu IH, Wu SC. Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy. Sci Rep. 2016; 6:23120. doi: 10.1038/srep23120.
  75. Li J, Yu Q, Huang H, Deng W, Cao X, Adu-Frimpong M, et al. Human chorionic plate-derived mesenchymal stem cells transplantation restores ovarian function in a chemotherapy-induced mouse model of premature ovarian failure. Stem Cell Res Ther. 2018; 9(1):81. doi: 10.1186/s13287-018-0819-z.
  76. Li H, Zhao W, Wang L, Luo Q, Yin N, Lu X, et al. Human placenta-derived mesenchymal stem cells inhibit apoptosis of granulosa cells induced by IRE1α pathway in autoimmune POF mice. Cell Biol Int. 2019; 43(8):899-909. doi: 10.1002/cbin.11165.
  77. Yin N, Zhao W, Luo Q, Yuan W, Luan X, Zhang H. Restoring ovarian function with human placenta-derived mesenchymal stem cells in autoimmune-induced premature ovarian failure mice mediated by treg cells and associated cytokines. Reprod Sci. 2018; 25(7):1073-82. doi: 10.1177/1933719117732156.
  78. Jung D, Xiong J, Ye M, Qin X, Li L, Cheng S, et al. In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Commun. 2017; 8:15680. doi: 10.1038/ncomms15680.
  79. Lai D, Guo Y, Zhang Q, Chen Y, Xiang C. Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells. Acta Biochim Biophys Sin (Shanghai). 2016; 48(11):998-1005. doi: 10.1093/abbs/gmw090.
  80. Hu X, Lu H, Cao S, Deng YL, Li QJ, Wan Q, et al. Stem cells derived from human first-trimester umbilical cord have the potential to differentiate into oocyte-like cells In Vitro. Int J Mol Med. 2015; 35(5):1219-29. doi: 10.3892/ijmm.2015.2132.
  81. Yu X, Wang N, Qiang R, Wan Q, Qin M, Chen S, et al. Human amniotic fluid stem cells possess the potential to differentiate into primordial follicle oocytes In Vitro. Biol Reprod. 2014; 90(4):73. doi: 10.1095/biolreprod.113.112920.
  82. Qiu P, Bai Y, Pan S, Li W, Liu W, Hua J. Gender depended potentiality of differentiation of human umbilical cord mesenchymal stem cells into oocyte-Like cells In Vitro. Cell Biochem Funct. 2013; 31(5):365-73. doi: 10.1002/cbf.2981.
  83. Sun R, Sun YC, Ge W, Tan H, Cheng SF, Yin S, et al. The crucial role of Activin A on the formation of primordial germ cell-like cells from skin-derived stem cells In Vitro. Cell Cycle. 2015; 14(19):3016-29. doi: 10.1080/15384101.2015.1078031.
  84. de Souza GB, Costa J, da Cunha EV, Passos J, Ribeiro RP, Saraiva M, et al. Bovine ovarian stem cells differentiate into germ cells and oocyte-like structures after culture In Vitro. Reprod Domest Anim. 2017; 52(2):243-50. doi: 10.1111/rda.12886.
  85. Lee YM, Kim TH, Lee JH, Lee WJ, Jeon RH, Jang SJ, et al. Overexpression of Oct4 in porcine ovarian stem/stromal cells enhances differentiation of oocyte-like cells In Vitro and ovarian follicular formation in vivo. J Ovarian Res. 2016; 9:24. doi: 10.1186/s13048-016-0233-z.
  86. Asgari HR, Akbari M, Abbasi M, Ai J, Korouji M, Aliakbari F, et al. Human Wharton's jelly-derived mesenchymal stem cells express oocyte developmental genes during co-culture with placental cells. Iran J Basic Med Sci. 2015; 18(1):22-9. PMID: 25810872.
  87. Ge W, Ma HG, Cheng SF, Sun YC, Sun LL, Sun X, et al. Differentiation of early germ cells from human skin-derived stem cells without exogenous gene integration. Sci Rep. 2015; 5:13822. doi: 10.1038/srep13822.
  88. Dyce PW, Wen L, Li J. In Vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol. 2006; 8(4):384-90. doi: 10.1038/ncb1388.
  89. Dyce PW, Shen W, Huynh E, Shao H, Villagomez DA, Kidder GM, et al. Analysis of oocyte-like cells differentiated from porcine fetal skin-derived stem cells. Stem Cells Dev. 2011; 20(5):809-19. doi: 10.1089/scd.2010.0395.
  90. Costa JJDN, de Souza GB, Bernardo JMP, Ribeiro RP, Passos JRS, Bezerra FTG, et al. Expression of markers for germ cells and oocytes in cow dermal fibroblast treated with 5-azacytidine and cultured in differentiation medium containing BMP2, BMP4 or follicular fluid. Zygote. 2017; 25(3):341-57. doi: 10.1017/S0967199417000211. 
  91. Bahmanpour S, Zarei Fard N, Talaei-Khozani T, Hosseini A, Esmaeilpour T. Effect of BMP4 preceded by retinoic acid and co-culturing ovarian somatic cells on differentiation of mouse embryonic stem cells into oocyte-like cells. Dev Growth Differ. 2015; 57(5):378-88. doi: 10.1111/dgd.12217.
  92. Sun B, Ma Y, Wang F, Hu L, Sun Y. miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis. Stem Cell Res Ther. 2019; 10:360. doi: 10.1186/s13287-019-1442-3.
  93. Zhang Q, Sun J, Huang Y, Bu S, Guo Y, Gu T, et al. Human amniotic epithelial cell-derived exosomes restore ovarian function by transferring micrornas against apoptosis. Mol Ther Nucleic Acids. 2019; 16:407-18. doi: 10.1016/j.omtn.2019.03.008.
  94. Yang M, Lin L, Sha C, Li T, Zhao D, Wei H, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN. Lab Invest. 2020; 100(3):342-52. doi: 10.1038/s41374-019-0321-y.
  95. Navid S, Abbasi M, Hoshino Y. The effects of melatonin on colonization of neonate spermatogonial mouse stem cells in a three-dimensional soft agar culture system. Stem Cell Res Ther. 2017; 8(1):233. doi: 10.1186/s13287-017-0687-y.
  96. Gholami K, Pourmand G, Koruji M, Sadighigilani M, Navid S, Izadyar F, et al. Efficiency of colony formation and differentiation of human spermatogenic cells in two different culture systems. Reprod Biol. 2018; 18(4):397-403. doi: 10.1016/j.repbio.2018.09.006.
  97. He X. Microfluidic encapsulation of ovarian follicles for 3D culture. Ann Biomed Eng. 2017; 45(7):1676-84. doi: 10.1007/s10439-017-1823-7.
  98. Chiti MC, Dolmans MM, Donnez J, Amorim CA. Fibrin in reproductive tissue engineering: a review on its application as a biomaterial for fertility preservation. Ann Biomed Eng. 2017; 45(7):1650-63. doi: 10.1007/s10439-017-1817-5.
  99. Ding L, Yan G, Wang B, Xu L, Gu Y, Ru T, et al. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. Sci China Life Sci. 2018; 61(12):1554-65. doi: 10.1007/s11427-017-9272-2.
  100. Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009; 24(10):2531-40. doi: 10.1093/humrep/dep228.
  101. Bharti D, Jang SJ, Lee SY, Lee SL, Rho GJ. In Vitro generation of oocyte like cells and their in vivo efficacy: How far we have been succeeded. Cells. 2020; 9(3):557. doi: 10.3390/cells9030557.
  102. Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell. 2012; 10(3):244-58. doi: 10.1016/j.stem.2012.02.005.
  103. Zhang Z, Wang JA, Xu Y, Jiang Z, Wu R, Wang L, et al. Menstrual blood derived mesenchymal cells ameliorate cardiac fibrosis via inhibition of endothelial to mesenchymal transition in myocardial infarction. Int J Cardiol. 2013; 168(2):1711-4. doi: 10.1016/j.ijcard.2013.03.126.
  104. Wang Z, Wang Y, Yang T, Li J, Yang X. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Res Ther. 2017; 8(1):11. doi: 10.1186/s13287-016-0458-1.
  105. Liu R, Zhang X, Fan Z, Wang Y, Yao G, Wan X, et al. Human amniotic mesenchymal stem cells improve the follicular microenvironment to recover ovarian function in premature ovarian failure mice. Stem Cell Res Ther. 2019; 10(1):299. doi: 10.1186/s13287-019-1315-9.
  106. Tkach M, Thery C. Communication by Extracellular Vesicles: Where we are and where we need to go. Cell. 2016; 164(6):1226-32. doi: 10.1016/j.cell.2016.01.043.
  107. Liu M, Qiu Y, Xue Z, Wu R, Li J, Niu X, ... Wu Q. Small extracellular vesicles derived from embryonic stem cells restore ovarian function of premature ovarian failure through PI3K/AKT signaling pathway. Stem Cell Res Ther. 2020; 11:3. doi: 10.1186/s13287-019-1508-2.
  108. Zhao YX, Chen SR, Su PP, Huang FH, Shi YC, Shi QY, Lin S. Using Mesenchymal Stem Cells to Treat Female Infertility: An Update on Female Reproductive Diseases. Stem Cells Int. 2019; 2019: 9071720. doi: 1155/2019/9071720.
  109. Ghahremani-Nasab M, Ghanbari E, Jahanbani Y, Mehdizadeh A, Yousefi M. Premature ovarian failure and tissue engineering. J Cell Physiol. 2020; 235(5):4217-26. doi: 10.1002/jcp.29376.
  110. Khosravizadeh Z,  Rashidi Z, Talebi A, Khodamoradi K, Hassanzadeh G. The role of mitochondria in premature ovarian failure: A review. J Contemp Med Sci. 2020. 6(1):1-7. doi: 10.22317/jcms.v6i1.712.