Document Type : Original Article

Authors

1 Mycology and Bacteriology Research center, Kerman University of Medical Sciences, Kerman, Iran & Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran

2 Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran

Abstract

Background: Pseudomonas aeruginosa is a human opportunistic pathogen that is known to be responsible for various diseases. However, its antibiotic-resistant isolates often cause serious infections.
Methods: This study for the first time investigated a total of 80 P. aeruginosa isolates collected from patients admitted to Amir Al-Momenin hospital. The isolates were identified by biochemical assays. The combination disc test method was used to measure antibiotic susceptibility and confirm the presence of extended spectrum-beta lactamases-producing enzymes. Also, the presence of enzyme-producing genes bla CTXM-1, bla CTXM-2, bla CTXM-3, bla SHV, and bla OXA of the target enzymes was examined using polymerase chain reaction.
Results: Out of 80 P. aeruginosa isolates, 32 isolates (40%) were beta-lactamase generators. Resistance to the studied antibiotics was found to be 97.5%, 90%, 81.3%, 75%, 75%, 72.5%, 60%, 52.5%, 50%, 32.5%, 28.8%, and 0% for amoxicillin, amoxiclav cephalexin, nitrofurantoin, cotrimoxazole, azithromycin, ceftriaxone, cefotaxime, gentamicin, ceftazidime, ciprofloxacin, and imipenem, respectively. Therefore, the highest antibiotic resistance was against amoxicillin, co-amoxiclav, and cephalexin, respectively, while the lowest was detected for imipenem. Besides, 17.5% of the studied isolates were multidrug-resistant (MDR). Among extended-spectrum beta-lactamases-producing genes, bla CTXM-3 displayed the highest frequency of 84.4%.
Conclusion: The findings demonstrated the wide resistance of P. aeruginosa isolates against various antibiotic classes. According to the results, it is suggested to identify different patterns of antibiotic resistance of P. aeruginosa isolates prior to the onset of treatment for any P. aeruginosa-related infections.

Keywords

1. Ahmed OB, Asghar AH. The coexistence of extendedspectrum
β-lactamase and metallo-β-lactamase genes in
gram-negative bacteria. Arch Pharm Pract. 2021;12(3):22-8.
doi: 10.51847/TGx8aLP7mY.
2. Behzad Mehr R, Beigomi M, Saeidi S. A review of biofilm
formation and quorum sensing in Pseudomonas aeruginosa.
Quality and Durability of Agricultural Products and Food
Stuffs. 2022;1(3):16-30. [Persian].
3. Catalano A, Iacopetta D, Ceramella J, Scumaci D, Giuzio F,
Saturnino C, et al. Multidrug resistance (MDR): a widespread
phenomenon in pharmacological therapies. Molecules.
2022;27(3):616. doi: 10.3390/molecules27030616.
4. Taghvaee R, Shojapour M, Sadeghi A, Pourbabaie AA. The
study of antibiotic resistance pattern and the frequency of
extended-spectrum beta-lactamases (ESBL) in Pseudomonas
aeruginosa strains isolated from medical centers in Arak city,
Iran. Qom Univ Med Sci J. 2013;7(4):36-41. [Persian].
5. Akhavan Tafti F, Zandi H, Vakli M, Mousavi SM, Zarei
M. Frequency of β-lactamase and metallo-β-lactamase in
Pseudomonas aeruginosa strains isolated from burn wounds in
Yazd burn hospital during 2011-2012. Feyz. 2014;18(2):167-
74. [Persian].
6. Saleem M, Rashid F, Liaqat I, Liaqat I, Ulfat M, Sultan A, et
al. Phenotypic and molecular characterization of CTX-M type
B-lactamases in gram negative bacterial strains isolated from
hospitals, Lahore, Pakistan. J Oleo Sci. 2022;71(6):875-9. doi:
10.5650/jos.ess22041.
7. Davido B, Noussair L, El Sayed F, Jaffal K, Le Liepvre H,
Marmouset D, et al. Hip joint infections caused by multidrugresistant
Enterobacterales among patients with spinal cord
injury: experience of a reference center in the Greater
Paris area. Open Forum Infect Dis. 2022;9(6):ofac209. doi:
10.1093/ofid/ofac209.
8. Mardaneh J, Ahmadi K, Jahan Sepas A. Determination
antimicrobial resistance profile of Pseudomonas aeruginosa
strains isolated from hospitalized patients in Taleghani
Journal of Kerman University of Medical Sciences. Volume 29, Number 6, 2022 535
Antibiotic Resistance
hospital (Ahvaz, Iran) from 2011-2012. J Fasa Univ Med Sci.
2013;3(3):188-93. [Persian].
9. Al-Khudhairy MK, Al-Shammari MMM. Prevalence of metallo-
β-lactamase-producing Pseudomonas aeruginosa isolated
from diabetic foot infections in Iraq. New Microbes New
Infect. 2020;35:100661. doi: 10.1016/j.nmni.2020.100661.
10. Katvoravutthichai C, Boonbumrung K, Tiyawisutsri R.
Prevalence of β-lactamase classes A, C, and D among clinical
isolates of Pseudomonas aeruginosa from a tertiary-level
hospital in Bangkok, Thailand. Genet Mol Res. 2016;15(3):1-
12. doi: 10.4238/gmr.15038706.
11. Harada S, Ishii Y, Yamaguchi K. Extended-spectrum betalactamases:
implications for the clinical laboratory and
therapy. Korean J Lab Med. 2008;28(6):401-12. doi: 10.3343/
kjlm.2008.28.6.401.
12. Nasser M, Gayen S, Kharat AS. Prevalence of β-lactamase
and antibiotic-resistant Pseudomonas aeruginosa in the
Arab region. J Glob Antimicrob Resist. 2020;22:152-60. doi:
10.1016/j.jgar.2020.01.011.
13. Bhadauria B, Farooq U, Singh S, Dayal N, Mashkoor S, Sridhar
D. Bacteriological profile and antibiogram of gram negative
bacteria isolated from blood culture. Int Arch Biomed Clin
Res. 2017;3(2):91-5. doi: 10.21276/iabcr.2017.3.2.20.
14. Lasko MJ, Gill CM, Asempa TE, Nicolau DP. EDTA-modified
carbapenem inactivation method (eCIM) for detecting IMP
metallo-β-lactamase-producing Pseudomonas aeruginosa:
an assessment of increasing EDTA concentrations. BMC
Microbiol. 2020;20(1):220. doi: 10.1186/s12866-020-
01902-8.
15. Elahi G, Goli HR, Salehian M, Gholami M. Prevalence of
MDR, XDR and PDR phenotypes among Pseudomonas
aeruginosa strains isolated from hospitalized patients in
Mazandaran province, Iran. J Mazandaran Univ Med Sci.
2021;31(203):61-72. [Persian].
16. Shahraki Zahedani S, Jahantigh M, Amini Y. Determining
a pattern for antibiotic resistance in clinical isolations
of Pseudomonas aeruginosa. Tehran Univ Med J.
2018;76(8):517-22. [Persian].
17. Beig M, Arabestani MR. Investigation of MexAB-OprM efflux
pump gene expression in clinical isolates of Pseudomonas
aeruginosa isolated from intensive care unit. Iran J Med
Microbiol. 2019;13(2):142-50. doi: 10.30699/ijmm.13.2.142.
18. Khosravi AD, Motahar M, Abbasi Montazeri E. The frequency
of class1 and 2 integrons in Pseudomonas aeruginosa strains
isolated from burn patients in a burn center of Ahvaz, Iran.
PLoS One. 2017;12(8):e0183061. doi: 10.1371/journal.
pone.0183061.