Document Type : Review Article

Authors

1 Department of Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran

2 Department of Physiology, Medical School, Tarbiat Modares University, Tehran, Iran

Abstract

Nitric oxide (NO) is a small biological arbitrator and signaling molecule that has numerous significant biological roles in our body. Most of the neurons produce NO by neuronal nitric oxide synthase (nNOS). NO has been involved in the regulation of neurogenesis, synaptic plasticity, learning, and memory. Also, it contributes to the regulation of circulation and synapses, cerebral map formation, and neuropeptides. In the current review, we focused on previous research that has demonstrated structural aspects, subcellular localization, and some factors that adjust nNOS function. Furthermore, we have characterized the effect of nNOS in the brain in some physiological situations, particularly long-term potentiation and depression (LTP and LTD) and neural plasticity during development . Moreover, the effect of NO on neuropeptidergic neurons, including orexin, in reward systems was reviewed. Also, this study has focused on the NO involvement in brain circulation, the excitability of neurons, and the homeostatic balance of excitatory and inhibitory signaling in the brain.

Keywords

1. Zhou L, Zhu DY. Neuronal nitric oxide synthase: structure,
subcellular localization, regulation, and clinical implications.
Nitric Oxide. 2009;20(4):223-30. doi: 10.1016/j.
niox.2009.03.001.
2. Nazari S, Kourosh-Arami M, Komaki A, Hajizadeh S. Relative
contribution of central and peripheral factors in superficial
blood flow regulation following cold exposure. Physiol
Pharmacol. 2020;24(2):89-100. doi: 10.32598/ppj.24.2.50.
3. Guix FX, Uribesalgo I, Coma M, Muñoz FJ. The physiology and
pathophysiology of nitric oxide in the brain. Prog Neurobiol.
2005;76(2):126-52. doi: 10.1016/j.pneurobio.2005.06.001.
4. Schuman EM, Madison DV. A requirement for the intercellular
messenger nitric oxide in long-term potentiation. Science.
1991;254(5037):1503-6. doi: 10.1126/science.1720572.
5. Kalb RG, Agostini J. Molecular evidence for nitric oxidemediated
motor neuron development. Neuroscience.
1993;57(1):1-8. doi: 10.1016/0306-4522(93)90107-q.
6. Li H, Gu X, Dawson VL, Dawson TM. Identification of
calcium- and nitric oxide-regulated genes by differential
analysis of library expression (DAzLE). Proc Natl Acad Sci U S
A. 2004;101(2):647-52. doi: 10.1073/pnas.0305145101.
7. Kourosh-Arami M, Hosseini N, Mohsenzadegan M, Komaki
A, Joghataei MT. Neurophysiologic implications of neuronal
nitric oxide synthase. Rev Neurosci. 2020;31(6):617-36. doi:
10.1515/revneuro-2019-0111.
8. Palumbo ML, Fosser NS, Rios H, et al. Loss of hippocampal
neuronal nitric oxide synthase contributes to the stress-related
deficit in learning and memory. J Neurochem. 2007;102(1):261-
274. doi:10.1111/j.1471-4159.2007.04528.x.
9. Förstermann U, Sessa WC. Nitric oxide synthases: regulation
and function. Eur Heart J. 2012;33(7):829-837d. doi:10.1093/
eurheartj/ehr304.
10. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases:
structure, function and inhibition. Biochem J. 2001;357(Pt
3):593-615. doi:10.1042/0264-6021:3570593.
11. Lirk P, Hoffmann G, Rieder J. Inducible nitric oxide synthase-
-time for reappraisal. Curr Drug Targets Inflamm Allergy.
2002;1(1):89-108. doi:10.2174/1568010023344913.
12. Caviedes A, Varas-Godoy M, Lafourcade C, et al. Endothelial
Nitric Oxide Synthase Is Present in Dendritic Spines of Neurons
in Primary Cultures. Front Cell Neurosci. 2017;11:180.
Published 2017 Jul 4. doi:10.3389/fncel.2017.00180.
13. Malakouti SM, Kourosh Arami M, Sarihi A, et al. Reversible
inactivation and excitation of nucleus raphe magnus can
modulate tail blood flow of male Wistar rats in response to
hypothermia. Iran Biomed J. 2008;12(4):203-208.
14. Kourosh Arami M, Mirnajafi-Zadeh J, Komaki A, Amiri M,
Mehrpooya S, Jahanshahi A, et al. Nitric oxide in the nucleus
raphe magnus modulates cutaneous blood flow in rats during
hypothermia. Iran J Basic Med Sci. 2015;18(10):989-92.
15. Kourosh Arami M, Sarihi A, Behzadi J, Malakouti SM, Amiri
I, Zare Ekbatani R. The effect of hyperglycemia on nitric
oxidergic neurons in nucleus tractus solitarius and blood
pressure regulation in rats with induced diabetes. Iran J
Diabetes Metab. 2005;4(3):11-7. [Persian].
16. Kourosh Arami M, Sarihi A, Behzadi G, Amiri I, Malakouti
SM, Vahabian M. The effect of nucleus tractus solitarius nitric
oxidergic neurons on blood pressure in diabetic rats. Iran
Biomed J. 2006;10(1):15-9.
17. Rancillac A, Rossier J, Guille M, Tong XK, Geoffroy H,
Amatore C, et al. Glutamatergic control of microvascular
tone by distinct GABA neurons in the cerebellum.
J Neurosci. 2006;26(26):6997-7006. doi: 10.1523/
jneurosci.5515-05.2006.
18. Lovick TA. The medullary raphe nuclei: a system for
integration and gain control in autonomic and somatomotor
responsiveness? Exp Physiol. 1997;82(1):31-41. doi: 10.1113/
expphysiol.1997.sp004013.
19. Kourosh Arami M, Komaki A, Gharibzadeh S. Contribution
of nucleus raphe magnus to thermoregulation. Physiol
Pharmacol 2020, 24(3): 165-173. doi: 10.32598/ppj.24.3.20.
20. El-Mlili N, Rodrigo R, Naghizadeh B, Cauli O, Felipo
V. Chronic hyperammonemia reduces the activity of
neuronal nitric oxide synthase in cerebellum by altering its
localization and increasing its phosphorylation by calciumcalmodulin
kinase II. J Neurochem. 2008;106(3):1440-9. doi:
10.1111/j.1471-4159.2008.05495.x.
21. Li H, Poulos TL. Structure-function studies on nitric oxide
synthases. J Inorg Biochem. 2005;99(1):293-305. doi:
10.1016/j.jinorgbio.2004.10.016.
22. Yamamoto Y, Katsumata O, Furuyama S, Sugiya H. Ca2 + ,
calmodulin and phospholipids regulate nitricoxide synthase
activity in the rabbit submandibular gland. J Comp Physiol B.
2004;174(8):593-9. doi: 10.1007/s00360-004-0448-y.
23. Dreyer J, Schleicher M, Tappe A, Schilling K, Kuner T,
Kusumawidijaja G, et al. Nitric oxide synthase (NOS)-
interacting protein interacts with neuronal NOS and regulates
its distribution and activity. J Neurosci. 2004;24(46):10454-
65. doi: 10.1523/jneurosci.2265-04.2004.
24. Tricoire L, Vitalis T. Neuronal nitric oxide synthase expressing
neurons: a journey from birth to neuronal circuits. Front
Neural Circuits. 2012;6:82. doi: 10.3389/fncir.2012.00082.
25. Looft-Wilson RC, Billaud M, Johnstone SR, Straub AC,
Isakson BE. Interaction between nitric oxide signaling
and gap junctions: effects on vascular function. Biochim
Biophys Acta. 2012;1818(8):1895-902. doi: 10.1016/j.
bbamem.2011.07.031.
26. Prast H, Philippu A. Nitric oxide as modulator of neuronal
function. Prog Neurobiol. 2001;64(1):51-68. doi: 10.1016/
s0301-0082(00)00044-7.
Rezaei et al
574 Journal of Kerman University of Medical Sciences. Volume 29, Number 6, 2022
27. Cserép C, Szonyi A, Veres JM, Németh B, Szabadits E, de
Vente J, et al. Nitric oxide signaling modulates synaptic
transmission during early postnatal development. Cereb
Cortex. 2011;21(9):2065-74. doi: 10.1093/cercor/bhq281.
28. Garthwaite J. Concepts of neural nitric oxide-mediated
transmission. Eur J Neurosci. 2008;27(11):2783-802. doi:
10.1111/j.1460-9568.2008.06285.x.
29. D’Yakonova T L. NO-producing compounds transform
neuron responses to glutamate. Neurosci Behav Physiol.
2000;30(2):153-9. doi: 10.1007/bf02463153.
30. Kourosh Arami M, Hajizadeh S, Semnanian S. Postnatal
development changes in excitatory synaptic activity in the rat
locus coeruleus neurons. Brain Res. 2016;1648(Pt A):365-71.
doi: 10.1016/j.brainres.2016.07.036.
31. Kourosh Arami M, Semnanian S, Javan M, Hajizadeh S, Sarihi
A. Postnatal developmental alterations in the locus coeruleus
neuronal fast excitatory postsynaptic currents mediated by
ionotropic glutamate receptors of rat. Physiol Pharmacol.
2011;14(4):338-48.
32. Kourosh Arami M, Hajizadeh S. Maturation of NMDA
receptor-mediated spontaneous postsynaptic currents in the
rat locus coeruleus neurons. Physiol Int. 2020;107(1):18-29.
doi: 10.1556/2060.2020.00010.
33. Hosseini N, Kourosh-Arami M, Nadjafi S, Ashtari B. Structure,
Distribution, Regulation, and Function of Splice Variant
Isoforms of Nitric Oxide Synthase Family in the Nervous
System. Curr Protein Pept Sci. 2022;23(8):510-534. doi:10.21
74/1389203723666220823151326.
34. Kourosh Arami M, Mohsenzadegan M, Komaki A. A review
of excitation-inhibition balance in the nucleus tractus
solitarius as a gateway to neural cardiovascular regulation.
J Adv Med Biomed Res. 2020;28(126):47-53. doi: 10.30699/
jambs.28.126.47.
35. Obukuro K, Nobunaga M, Takigawa M, Morioka H, Hisatsune
A, Isohama Y, et al. Nitric oxide mediates selective degeneration
of hypothalamic orexin neurons through dysfunction of
protein disulfide isomerase. J Neurosci. 2013;33(31):12557-
68. doi: 10.1523/jneurosci.0595-13.2013.
36. Babasafari M, Kourosh Arami M, Behman J, Farhadi M,
Komaki A. Alteration of phospholipase C expression in rat
visual cortical neurons by chronic blockade of orexin receptor
1. Int J Pept Res Ther. 2020;26(3):1485-91. doi: 10.1007/
s10989-019-09943-y.
37. Rezaei Z, Kourosh Arami M, Azizi H, Semnanian S.
Orexin type-1 receptor inhibition in the rat lateral
paragigantocellularis nucleus attenuates development of
morphine dependence. Neurosci Lett. 2020;724:134875.
doi: 10.1016/j.neulet.2020.134875.
38. Xiao F, Jiang M, Du D, Xia C, Wang J, Cao Y, et al. Orexin
A regulates cardiovascular responses in stress-induced
hypertensive rats. Neuropharmacology. 2013;67:16-24. doi:
10.1016/j.neuropharm.2012.10.021.
39. Kourosh Arami M, Komaki A, Joghataei MT, Mohsenzadegan
M. Phospholipase Cβ3 in the hippocampus may mediate
impairment of memory by long-term blockade of orexin
1 receptors assessed by the Morris water maze. Life Sci.
2020;257:118046. doi: 10.1016/j.lfs.2020.118046.
40. Mousavi Z, Kourosh Arami M, Mohsenzadegan M, Komaki
A. An immunohistochemical study of the effects of orexin
receptor blockade on phospholipase C-β3 level in rat
hippocampal dentate gyrus neurons. Biotech Histochem.
2021;96(3):191-6. doi: 10.1080/10520295.2020.1778088.
41. Kourosh Arami M, Javan M, Semnanian S. Inhibition of orexin
receptor 1 contributes to the development of morphine
dependence via attenuation of cAMP response elementbinding
protein and phospholipase Cβ3. J Chem Neuroanat.
2020;108:101801. doi: 10.1016/j.jchemneu.2020.101801.
42. Kourosh Arami M, Joghataei MT, Komaki A, Gholami M,
Najafi Z, Lavaie M. Persistent effects of the orexin-1 receptor
antagonist SB-334867 on naloxone precipitated morphine
withdrawal symptoms and nociceptive behaviors in morphine
dependent rats. Int J Neurosci. 2022;132(1):67-76. doi:
10.1080/00207454.2020.1802266.
43. Cheung A, Newland PL, Zaben M, Attard GS, Gray WP.
Intracellular nitric oxide mediates neuroproliferative effect
of neuropeptide y on postnatal hippocampal precursor cells.
J Biol Chem. 2012;287(24):20187-96. doi: 10.1074/jbc.
M112.346783.
44. Luo CX, Jin X, Cao CC, Zhu MM, Wang B, Chang L, et al.
Bidirectional regulation of neurogenesis by neuronal nitric
oxide synthase derived from neurons and neural stem cells.
Stem Cells. 2010;28(11):2041-52. doi: 10.1002/stem.522.
45. Moreno-López B, Romero-Grimaldi C, Noval JA, Murillo-
Carretero M, Matarredona ER, Estrada C. Nitric oxide
is a physiological inhibitor of neurogenesis in the adult
mouse subventricular zone and olfactory bulb. J Neurosci.
2004;24(1):85-95. doi: 10.1523/jneurosci.1574-03.2004.
46. Meini A, Sticozzi C, Massai L, Palmi M. A nitric oxide/
Ca2 + /calmodulin/ERK1/2 mitogen-activated protein kinase
pathway is involved in the mitogenic effect of IL-1beta in
human astrocytoma cells. Br J Pharmacol. 2008;153(8):1706-
17. doi: 10.1038/bjp.2008.40.
47. Kourosh-Arami M, Kaeidi A, Semnanian S. Extracellular
Calcium Contributes to Orexin-Induced Postsynaptic
Excitation of the Rat Locus Coeruleus Neurons. Int J Pept Res
Ther. 2022; 28:68. doi:10.1007/s10989-022-10379-0.
48. Kourosh-Arami M, Hosseini N, Komaki A. Brain is modulated
by neuronal plasticity during postnatal development. J Physiol
Sci. 2021;71(1):34. Published 2021 Nov 17. doi:10.1186/
s12576-021-00819-9.
49. Bagheri S, Haddadi R, Saki S, Kourosh-Arami M, Komaki A. The
effect of sodium channels on neurological/neuronal disorders:
A systematic review. Int J Dev Neurosci. 2021;81(8):669-685.
doi:10.1002/jdn.10153.
50. Folci A, Steinberger A, Lee B, Stanika R, Scheruebel S,
Campiglio M, et al. Molecular mimicking of C-terminal
phosphorylation tunes the surface dynamics of Ca(V)1.2
calcium channels in hippocampal neurons. J Biol Chem.
2018;293(3):1040-53. doi: 10.1074/jbc.M117.799585.
51. Nirenberg VA, Yifrach O. Bridging the molecular-cellular gap
in understanding ion channel clustering. Front Pharmacol.
2019;10:1644. doi: 10.3389/fphar.2019.01644.
52. Oshaghi M, Kourosh-Arami M, Roozbehkia M. Role of
neurotransmitters in immune-mediated inflammatory
disorders: a crosstalk between the nervous and immune
systems [published online ahead of print, 2022 Sep 28].
Neurol Sci. 2022;10.1007/s10072-022-06413-0. doi:
10.1007/s10072-022-06413-0
53. Angelino E, Brenner MP. Excitability constraints on voltagegated
sodium channels. PLoS Comput Biol. 2007;3(9):1751-
60. doi: 10.1371/journal.pcbi.0030177.
54. Steinert JR, Kopp-Scheinpflug C, Baker C, Challiss RA, Mistry
R, Haustein MD, et al. Nitric oxide is a volume transmitter
regulating postsynaptic excitability at a glutamatergic
synapse. Neuron. 2008;60(4):642-56. doi: 10.1016/j.
neuron.2008.08.025.
55. Karimi SA, Kazemi F, Komaki H, Kourosh Arami M, Shahidi
S, Komaki A. Electrophysiological study of the interactive role
of the cannabinoid breakdown inhibitors and L-type calcium
channels on granular neurons in the hippocampal dentate
gyrus in rats. Neurol Res. 2022;44(5):446-454. doi:10.1080
/01616412.2021.2004364.
Journal of Kerman University of Medical Sciences. Volume 29, Number 6, 2022 575
Biological Functions of Nitric Oxide …
56. Wilson GW, Garthwaite J. Hyperpolarization-activated
ion channels as targets for nitric oxide signalling in deep
cerebellar nuclei. Eur J Neurosci. 2010;31(11):1935-45. doi:
10.1111/j.1460-9568.2010.07226.x.
57. Komaki A, Shahidi S, Sarihi A, Hasanein P, Lashgari R,
Haghparast A, et al. Effects of neonatal C-fiber depletion on
interaction between neocortical short-term and long-term
plasticity. Basic Clin Neurosci. 2013;4(2):136-45.
58. Kourosh Arami M, Sohya K, Sarihi A, Jiang B, Yanagawa Y,
Tsumoto T. Reciprocal Homosynaptic and heterosynaptic
long-term plasticity of corticogeniculate projection
neurons in layer VI of the mouse visual cortex. J Neurosci.
2013;33(18):7787-98. doi: 10.1523/jneurosci.5350-12.2013.
59. Sarihi A, Mirnajafi-Zadeh J, Jiang B, Sohya K, Safari MS,
Kourosh Arami M, et al. Cell type-specific, presynaptic LTP of
inhibitory synapses on fast-spiking GABAergic neurons in the
mouse visual cortex. J Neurosci. 2012;32(38):13189-99. doi:
10.1523/jneurosci.1386-12.2012.
60. Shlosberg D, Buskila Y, Abu-Ghanem Y, Amitai Y.
Spatiotemporal alterations of cortical network activity by
selective loss of NOS-expressing interneurons. Front Neural
Circuits. 2012;6:3. doi: 10.3389/fncir.2012.00003.
61. Jinno S, Kosaka T. Patterns of expression of calcium binding
proteins and neuronal nitric oxide synthase in different
populations of hippocampal GABAergic neurons in mice. J
Comp Neurol. 2002;449(1):1-25. doi: 10.1002/cne.10251.
62. Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC,
McBain CJ. Hippocampal GABAergic inhibitory interneurons.
Physiol Rev. 2017;97(4):1619-747. doi: 10.1152/
physrev.00007.2017.
63. Haghikia A, Mergia E, Friebe A, Eysel UT, Koesling D, Mittmann
T. Long-term potentiation in the visual cortex requires
both nitric oxide receptor guanylyl cyclases. J Neurosci.
2007;27(4):818-23. doi: 10.1523/jneurosci.4706-06.2007.
64. Haul S, Gödecke A, Schrader J, Haas HL, Luhmann HJ.
Impairment of neocortical long-term potentiation in mice
deficient of endothelial nitric oxide synthase. J Neurophysiol.
1999;81(2):494-7. doi: 10.1152/jn.1999.81.2.494.
65. Kantor DB, Lanzrein M, Stary SJ, Sandoval GM, Smith WB,
Sullivan BM, et al. A role for endothelial NO synthase
in LTP revealed by adenovirus-mediated inhibition and
rescue. Science. 1996;274(5293):1744-8. doi: 10.1126/
science.274.5293.1744.
66. Rafalovich IV, Melendez AE, Plotkin JL, Tanimura A, Zhai S,
Surmeier DJ. Interneuronal nitric oxide signaling mediates
post-synaptic long-term depression of striatal glutamatergic
synapses. Cell Rep. 2015;13(7):1336-42. doi: 10.1016/j.
celrep.2015.10.015.
67. Ogasawara H, Doi T, Doya K, Kawato M. Nitric oxide
regulates input specificity of long-term depression and
context dependence of cerebellar learning. PLoS Comput
Biol. 2007;3(1):e179. doi: 10.1371/journal.pcbi.0020179.
68. Castillo PE. Presynaptic LTP and LTD of excitatory and
inhibitory synapses. Cold Spring Harb Perspect Biol.
2012;4(2):a005728. doi: 10.1101/cshperspect.a005728.
69. Bon CL, Garthwaite J. On the role of nitric oxide in hippocampal
long-term potentiation. J Neurosci. 2003;23(5):1941-8. doi:
10.1523/jneurosci.23-05-01941.2003.
70. Lisman J, Raghavachari S. A unified model of the presynaptic
and postsynaptic changes during LTP at CA1 synapses. Sci
STKE. 2006;2006(356):re11. doi: 10.1126/stke.3562006re11.
71. Malenka RC, Bear MF. LTP and LTD: an embarrassment
of riches. Neuron. 2004;44(1):5-21. doi: 10.1016/j.
neuron.2004.09.012.
72. Lev-Ram V, Makings LR, Keitz PF, Kao JP, Tsien RY. Longterm
depression in cerebellar Purkinje neurons results
from coincidence of nitric oxide and depolarizationinduced
Ca2 + transients. Neuron. 1995;15(2):407-15. doi:
10.1016/0896-6273(95)90044-6.
73. Ko GY, Kelly PT. Nitric oxide acts as a postsynaptic
signaling molecule in calcium/calmodulin-induced
synaptic potentiation in hippocampal CA1 pyramidal
neurons. J Neurosci. 1999;19(16):6784-94. doi: 10.1523/
jneurosci.19-16-06784.1999.
74. Karimi SA, Kazemi F, Komaki H, Kourosh Arami M, Shahidi
S, Komaki A. Electrophysiological study of the interactive role
of the cannabinoid breakdown inhibitors and L-type calcium
channels on granular neurons in the hippocampal dentate
gyrus in rats. Neurol Res. 2022;44(5):446-454. doi:10.1080
/01616412.2021.2004364.
75. Loup F, Wieser HG, Yonekawa Y, Aguzzi A, Fritschy JM.
Selective alterations in GABAA receptor subtypes in human
temporal lobe epilepsy. J Neurosci. 2000;20(14):5401-19.
doi: 10.1523/jneurosci.20-14-05401.2000.
76. Lionel AC, Vaags AK, Sato D, Gazzellone MJ, Mitchell EB,
Chen HY, et al. Rare exonic deletions implicate the synaptic
organizer Gephyrin (GPHN) in risk for autism, schizophrenia
and seizures. Hum Mol Genet. 2013;22(10):2055-66. doi:
10.1093/hmg/ddt056.
77. Ling S, Zhou J, Rudd JA, Hu Z, Fang M. The expression of
neuronal nitric oxide synthase in the brain of the mouse during
embryogenesis. Anat Rec (Hoboken). 2012;295(3):504-14.
doi: 10.1002/ar.22408.
78. Vincent SR. Nitric oxide neurons and neurotransmission.
Prog Neurobiol. 2010;90(2):246-55. doi: 10.1016/j.
pneurobio.2009.10.007.
79. Cramer KS, Sur M. Activity-dependent remodeling of
connections in the mammalian visual system. Curr
Opin Neurobiol. 1995;5(1):106-11. doi: 10.1016/0959-
4388(95)80094-8.
80. Regehr WG, Carey MR, Best AR. Activity-dependent
regulation of synapses by retrograde messengers. Neuron.
2009;63(2):154-70. doi: 10.1016/j.neuron.2009.06.021.
81. Gibbs SM. Regulation of neuronal proliferation and
differentiation by nitric oxide. Mol Neurobiol. 2003;27(2):107-
20. doi: 10.1385/mn:27:2:107.
82. Yuan Q, Scott DE, So KF, Wu W. Developmental
changes of nitric oxide synthase expression in the rat
hypothalamoneurohypophyseal system. Anat Rec A Discov
Mol Cell Evol Biol. 2006;288(1):36-45. doi: 10.1002/
ar.a.20271.
83. Wolpert L. One hundred years of positional information.
Trends Genet. 1996;12(9):359-64. doi: 10.1016/s0168-
9525(96)80019-9.
84. Megason SG, McMahon AP. A mitogen gradient of dorsal
midline Wnts organizes growth in the CNS. Development.
2002;129(9):2087-98. doi: 10.1242/dev.129.9.2087.
85. Vercelli A, Garbossa D, Biasiol S, Repici M, Jhaveri S. NOS
inhibition during postnatal development leads to increased
ipsilateral retinocollicular and retinogeniculate projections in
rats. Eur J Neurosci. 2000;12(2):473-90. doi: 10.1046/j.1460-
9568.2000.00925.x.
86. Van der Loos H, Woolsey TA. Somatosensory cortex: structural
alterations following early injury to sense organs. Science.
1973;179(4071):395-8. doi: 10.1126/science.179.4071.395.
87. Finney EM, Shatz CJ. Establishment of patterned
thalamocortical connections does not require nitric oxide
synthase. J Neurosci. 1998;18(21):8826-38. doi: 10.1523/
jneurosci.18-21-08826.1998.
88. Rörig B, Sutor B. Regulation of gap junction coupling in the
developing neocortex. Mol Neurobiol. 1996;12(3):225-49.
doi: 10.1007/bf02755590.
Rezaei et al
576 Journal of Kerman University of Medical Sciences. Volume 29, Number 6, 2022
89. Roerig B, Feller MB. Neurotransmitters and gap junctions
in developing neural circuits. Brain Res Brain Res Rev.
2000;32(1):86-114. doi: 10.1016/s0165-0173(99)00069-7.
90. Rosenwinkel ET, Bloomfield DM, Arwady MA, Goldsmith RL.
Exercise and autonomic function in health and cardiovascular
disease. Cardiol Clin. 2001;19(3):369-87. doi: 10.1016/
s0733-8651(05)70223-x.
91. Zanzinger J, Czachurski J. Chronic oxidative stress in the RVLM
modulates sympathetic control of circulation in pigs. Pflugers
Arch. 2000;439(4):489-94. doi: 10.1007/s004249900204.
92. Zanzinger J. Mechanisms of action of nitric oxide in the brain
stem: role of oxidative stress. Auton Neurosci. 2002;98(1-
2):24-7. doi: 10.1016/s1566-0702(02)00025-5.
93. Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier
J, et al. Cortical GABA interneurons in neurovascular coupling:
relays for subcortical vasoactive pathways. J Neurosci.
2004;24(41):8940-9. doi: 10.1523/jneurosci.3065-04.2004.
94. Qu GJ, Ma J, Yu YC, Fu Y. Postnatal development of
GABAergic interneurons in the neocortical subplate of
mice. Neuroscience. 2016;322:78-93. doi: 10.1016/j.
neuroscience.2016.02.023.
95. Talman WT, Nitschke Dragon D. Neuronal nitric
oxide mediates cerebral vasodilatation during acute
hypertension. Brain Res. 2007;1139:126-32. doi: 10.1016/j.
brainres.2007.01.008.
96. Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KT.
The role of the nitric oxide pathway in brain injury and its
treatment--from bench to bedside. Exp Neurol. 2015;263:235-
43. doi: 10.1016/j.expneurol.2014.10.017.
97. Takuwa H, Matsuura T, Bakalova R, Obata T, Kanno I.
Contribution of nitric oxide to cerebral blood flow regulation
under hypoxia in rats. J Physiol Sci. 2010;60(6):399-406. doi:
10.1007/s12576-010-0108-9.
98. Chachlaki K, Prevot V. Nitric oxide signalling in the
brain and its control of bodily functions. Br J Pharmacol.
2020;177(24):5437-58. doi: 10.1111/bph.14800.
99. Förstermann U, Sessa WC. Nitric oxide synthases: regulation
and function. Eur Heart J. 2012;33(7):829-37, 37a-37d. doi:
10.1093/eurheartj/ehr304.
100. Mikkelsen RB, Wardman P. Biological chemistry of
reactive oxygen and nitrogen and radiation-induced signal
transduction mechanisms. Oncogene. 2003;22(37):5734-54.
doi: 10.1038/sj.onc.1206663.
101. Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda
KM, Paolocci N, et al. The chemistry of nitrosative stress
induced by nitric oxide and reactive nitrogen oxide species.
Putting perspective on stressful biological situations. Biol
Chem. 2004;385(1):1-10. doi: 10.1515/bc.2004.001.
102. Liñares D, Taconis M, Maña P, Correcha M, Fordham S,
Staykova M, et al. Neuronal nitric oxide synthase plays a key
role in CNS demyelination. J Neurosci. 2006;26(49):12672-
81. doi: 10.1523/jneurosci.0294-06.2006.
103. Mohsenzadegan M, Kourosh Arami M, Oshaghi M, Sedigh
Maroufi S. A review of the effects of the anesthetic gas
nitrous oxide on the immune system; a starting point for
future experiences. Immunopharmacol Immunotoxicol.
2020;42(3):179-186. doi:10.1080/08923973.2020.1735412.