Document Type : Review Article

Authors

1 Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran

2 Department of Physiology, School of Medicine, Bam University of Medical Sciences, Bam, Iran

3 Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran & Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

Abstract

The authors opinions in physiology books are different on some issues, and this mixes up the readers. The purpose of this article is to clarify the differences between two examples in renal physiology (the autoregulation and the reabsorption of the materials in the proximal tubule) to help better understand; therefore, this paper is especially beneficial for medical students. The latest editions of several physiology books are used in this study including Brenner and Rector›s “The Kidney”, Seldin and Giebisch’s “The Kidney Physiology and Pathophysiology”, Koeppen Stanton›s “Renal Physiology”, Vander’s “Renal Physiology”, Boron’s “Medical Physiology”, Ganong’s “Review of Medical Physiology”, Rose’s “Clinical Physiology of Acid-Base and Electrolyte Disorders”, “Renal Pathophysiology: the Essentials” by Rennke and Denker, “Color Atlas of Physiology”, “Renal Physiology: a Clinical Approach”, and “Medical Physiology” by Guyton. It is concluded that the two above-said methods, in general, adopt similar approaches. However, there are some differences in terms of details that are explained and clarified in this study.

Keywords

1. Skorecki K, Chertow GM, Marsden PA, Taal MW, Yu ASL.
Brenner and Rector’s the Kidney E-Book. 10th ed. Elsevier
Health Sciences; 2016.
2. Majid DS, Navar LG. Medullary blood flow responses
to changes in arterial pressure in canine kidney. Am
J Physiol. 1996;270(5 Pt 2):F833-8. doi: 10.1152/
ajprenal.1996.270.5.F833.
3. Heyeraas KJ, Aukland K. Interlobular arterial resistance:
influence of renal arterial pressure and angiotensin II. Kidney
Int. 1987;31(6):1291-8. doi: 10.1038/ki.1987.142.
4. Alpern RJ, Moe OW, Caplan M. Seldin and Giebisch’s the
Kidney: Physiology & Pathophysiology 1-2. Elsevier; 2013.
5. Cupples WA, Braam B. Assessment of renal autoregulation. Am J Physiol Renal Physiol. 2007;292(4):F1105-23. doi:
10.1152/ajprenal.00194.2006.
6. Walker M 3rd, Harrison-Bernard LM, Cook AK, Navar
LG. Dynamic interaction between myogenic and TGF
mechanisms in afferent arteriolar blood flow autoregulation.
Am J Physiol Renal Physiol. 2000;279(5):F858-65. doi:
10.1152/ajprenal.2000.279.5.F858.
7. Eaton DC, Pooler JP. Vander’s Renal Physiology. New York:
AbeBooks; 2013.
8. Barrett KE, Barman SM, Boitano S, Brooks H. Ganong’s
Review of Medical Physiology. 25th ed. New York: McGraw-
Hill Medical; 2016.
9. Boron WF, Boulpaep EL. Medical Physiology, 2e Updated
Edition E-Book: With Student Consult Online Access. Elsevier
Health Sciences; 2012.
10. Rose B, Post T. Clinical Physiology of Acid-Base and
Electrolyte Disorders. McGraw Hill; 2001.
11. Hall JE, Guyton AC, Jackson TE, Coleman TG, Lohmeier TE,
Trippodo NC. Control of glomerular filtration rate by reninangiotensin
system. Am J Physiol. 1977;233(5):F366-72. doi:
10.1152/ajprenal.1977.233.5.F366.
12. Navar LG. Renal autoregulation: perspectives from whole kidney
and single nephron studies. Am J Physiol. 1978;234(5):F357-
70. doi: 10.1152/ajprenal.1978.234.5.F357.
13. Schnermann J, Briggs JP, Weber PC. Tubuloglomerular
feedback, prostaglandins, and angiotensin in the
autoregulation of glomerular filtration rate. Kidney Int.
1984;25(1):53-64. doi: 10.1038/ki.1984.8.
14. Kastner PR, Hall JE, Guyton AC. Control of glomerular
filtration rate: role of intrarenally formed angiotensin II.
Am J Physiol. 1984;246(6 Pt 2):F897-906. doi: 10.1152/
ajprenal.1984.246.6.F897.
15. Rennke HG, Denker BM. Renal Pathophysiology: The
Essentials. Lippincott Williams & Wilkins; 2014.
16. Koeppen BM, Stanton BA. Renal Physiology E-Book: Mosby
Physiology Monograph Series. Elsevier Health Sciences;
2013.
17. Silbernagl S, Despopoulos A. Color Atlas of Physiology. New
York: Thieme; 2009.
18. Danziger J, Zeidel M, Parker MJ. Renal Physiology: A Clinical
Approach. Lippincott Williams & Wilkins; 2012.
19. Hall JE. Guyton and Hall Textbook of Medical Physiology
E-Book. Elsevier Health Sciences; 2021.
20. Rhoades RA, Bell DR. Medical Phisiology: Principles for
Clinical Medicine. 4th ed. Lippincott Williams & Wilkins;
2012.
21. Liu FY, Cogan MG. Axial heterogeneity of bicarbonate,
chloride, and water transport in the rat proximal convoluted
tubule. Effects of change in luminal flow rate and of alkalemia.
J Clin Invest. 1986;78(6):1547-57. doi: 10.1172/jci112747.
22. Greger R, Windhorst U. Comprehensive Human Physiology:
From Cellular Mechanisms to Integration. Vol 1. Berlin,
Heidelberg: Springer-Verlag; 1996.
23. Brown TA. Rapid Review Physiology. 2nd ed. Mosby, Inc;
2012.
24. Preston RR, Wilson TE. Lippincott’s Illustrated Reviews:
Physiology. Lippincott Williams & Wilkins; 2013.
25. Cheng HM, Hoe SZ. Students’ convoluted trouble with renal
autoregulation: a teaching note for students and physiology
educators. BLDE Univ J Health Sci. 2016;1(1):25.
26. Maddox DA, Gennari FJ. The early proximal tubule:
a high-capacity delivery-responsive reabsorptive site.
Am J Physiol. 1987;252(4 Pt 2):F573-84. doi: 10.1152/
ajprenal.1987.252.4.F573.
27. Barratt LJ, Rector FC Jr, Kokko JP, Seldin DW. Factors governing
the transepithelial potential difference across the proximal
tubule of the rat kidney. J Clin Invest. 1974;53(2):454-64. doi:
10.1172/jci107579.
28. Katz AI, Doucet A, Morel F. Na-K-ATPase activity along the
rabbit, rat, and mouse nephron. Am J Physiol. 1979;237(2):F114-
20. doi: 10.1152/ajprenal.1979.237.2.F114.
29. Vallon V, Verkman AS, Schnermann J. Luminal hypotonicity
in proximal tubules of aquaporin-1-knockout mice. Am J
Physiol Renal Physiol. 2000;278(6):F1030-3. doi: 10.1152/
ajprenal.2000.278.6.F1030.
30. Sohara E, Rai T, Miyazaki J, Verkman AS, Sasaki S, Uchida
S. Defective water and glycerol transport in the proximal
tubules of AQP7 knockout mice. Am J Physiol Renal Physiol.
2005;289(6):F1195-200. doi: 10.1152/ajprenal.00133.2005.
31. Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA,
Verkman AS. Defective proximal tubular fluid reabsorption in
transgenic aquaporin-1 null mice. Proc Natl Acad Sci U S A.
1998;95(16):9660-4. doi: 10.1073/pnas.95.16.9660.
32. Schild L, Giebisch G, Green R. Chloride transport in the
proximal renal tubule. Annu Rev Physiol. 1988;50:97-110.
doi: 10.1146/annurev.ph.50.030188.000525.