Document Type : Original Article

Authors

1 Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran

2 Deputy of Research and Technology, Jiroft University of Medical Sciences, Jiroft, Iran

3 Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran

4 Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran

5 Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran

6 Pharmaceutical Research Center, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran , Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Abstract

Background: One of the principal cigarette smokes (CS) mediated diseases is chronic obstructive pulmonary disease (COPD). Methods: In the current case-control study, the relationship between the polymorphisms of interleukin-10 (IL-10), transforming growth factor-β1 (TGF-β1) codon 10, TGF-β1 codon 25, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) in 213 individuals with COPD and susceptibility to the disease, with 100 healthy age and gender-matched people as a control group, was investigated using PCR-ARMS (polymerase chain reaction-amplification refractory mutation system). Moreover, the combination of the polymorphisms of TGF-β1 codon 10.25 regarding this susceptibility was studied in the same condition.
Results: There was a significant difference between polymorphism of TGF-β1 codon 10 (+869 T/C), codon 25 (G+915C), and susceptibility to the disease (OR=0.50; (95 %CI=0.24-1.07, p=0.05), ORCC=5.31; (95% CI: 1.22-23.2); p=0.02), thus polymorphism of IL-10 and TGF-β1 increased the risk of susceptibility to COPD but the polymorphisms of TNF-α (G-308A) and IFN-γ ( + 847 T/A) did not show any association.
Conclusion: All in all, it is recommended that the patients carrying the above-said genotypes should be paid proper attention, especially those who are exposed to chemicals at their workplaces, pollution, and cigarette smoke.

Highlights

Arian Amirkhosravi(Google scholar)(Pubmed)

Elham Salari(Google scholar)(Pubmed)

Seyyed-Mehdi Hashemi-Bajgani(Google scholar)(Pubmed)

 Mitra Samareh Fekri(Google scholar)(Pubmed)

Mohammad Mehdipour(Google scholar)(Pubmed)

Ali Mandegary(Google scholar)(Pubmed)

Keywords

  1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med. 2017;195(5):557-82. doi: 10.1164/ rccm.201701-0218PP.

  2. Mulpuru S, McKay J, Ronksley PE, Thavorn K, Kobewka DM, Forster AJ. Factors contributing to high-cost hospital care for patients with COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:989-95. doi: 10.2147/copd.s126607.

  3. MacNee W. Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol. 2001;429(1-3):195-207. doi: 10.1016/s0014-2999(01)01320-6.

  4. Dey T, Dutta P, Manna P, Kalita J, Boruah HPD, Buragohain AK, et al. Cigarette smoke compounds induce cellular redox imbalance, activate NF-κB, and increase TNF-α/CRP secretion: a possible pathway in the pathogenesis of COPD. Toxicol Res (Camb). 2016;5(3):895-904. doi: 10.1039/c5tx00477b.

5. Ugenskienė R, Sanak M, Sakalauskas R, Szczeklik A. Genetic polymorphisms in chronic obstructive pulmonary disease. Medicina (Kaunas). 2005;41(1):17-22.

6. Wu X, Yuan B, López E, Bai C, Wang X. Gene polymorphisms and chronic obstructive pulmonary disease. J Cell Mol Med. 2014;18(1):15-26. doi: 10.1111/jcmm.12159.

7. Yuan C, Chang D, Lu G, Deng X. Genetic polymorphism and chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:1385-93. doi: 10.2147/copd.s134161.

8. D’Alfonso S, Rampi M, Rolando V, Giordano M, Momigliano- Richiardi P. New polymorphisms in the IL-10 promoter region. Genes Immun. 2000;1(3):231-3. doi: 10.1038/ sj.gene.6363666.

9. Mihailova S, Ivanova-Genova E, Lukanov T, Stoyanova V, Milanova V, Naumova E. A study of TNF-α, TGF-β, IL-10, IL-6, and IFN-γ gene polymorphisms in patients with depression. J Neuroimmunol. 2016;293:123-8. doi: 10.1016/j. jneuroim.2016.03.005.

10. Li D, Ji H, Zhao B, Xu C, Xia W, Han L, et al. Therapeutic effect of ulinastatin on pulmonary fibrosis via downregulation of TGF-β1, TNF-α and NF-κB. Mol Med Rep. 2018;17(1):1717- 23. doi: 10.3892/mmr.2017.8056.

11. Reséndiz-Hernández JM, Ambrocio-Ortiz E, Pérez-Rubio G, López-Flores LA, Abarca-Rojano E, Pavón-Romero GF, et al. TNF promoter polymorphisms are associated with genetic susceptibility in COPD secondary to tobacco smoking and biomass burning. Int J Chron Obstruct Pulmon Dis. 2018;13:627-37. doi: 10.2147/copd.s147688.

12. Nemec P, Pavkova-Goldbergova M, Stouracova M, Vasku A, Soucek M, Gatterova J. Polymorphism in the tumor necrosis factor-alpha gene promoter is associated with severity of rheumatoid arthritis in the Czech population. Clin Rheumatol. 2008;27(1):59-65. doi: 10.1007/s10067-007-0653-7.

13. Eaton KD, Romine PE, Goodman GE, Thornquist MD, Barnett MJ, Petersdorf EW. Inflammatory gene polymorphisms in lung cancer susceptibility. J Thorac Oncol. 2018;13(5):649-59. doi: 10.1016/j.jtho.2018.01.022.

14. Victor DJ, Subramanian S, Gnana PPS, Joseph BJ. Tumor necrosis factor-alpha-308 gene polymorphism in the association between gestational diabetes mellitus and chronic periodontitis in South Indian population. J Pharmacol Pharmacother. 2018;9(2):109-12. doi: 10.4103/jpp. JPP_45_18.

15. Fujii D, Brissenden JE, Derynck R, Francke U. Transforming growth factor beta gene maps to human chromosome 19 long arm and to mouse chromosome 7. Somat Cell Mol Genet. 1986;12(3):281-8. doi: 10.1007/bf01570787.

16. Verrecchia F, Rédini F. Transforming growth factor-β signaling plays a pivotal role in the interplay between osteosarcoma cells and their microenvironment. Front Oncol. 2018;8:133. doi: 10.3389/fonc.2018.00133.

17. Haj-Salem I, Plante S, Gounni AS, Rouabhia M, Chakir J. Fibroblast-derived exosomes promote epithelial cell proliferation through TGF-β2 signalling pathway in severe asthma. Allergy. 2018;73(1):178-86. doi: 10.1111/all.13234.

18. Xin L, Jiang M, Su G, Xie M, Chen H, Liu X, et al. The association between transforming growth factor beta1 polymorphism and susceptibility to pulmonary fibrosis: a meta-analysis (MOOSE compliant). Medicine (Baltimore). 2018;97(37):e11876. doi: 10.1097/md.0000000000011876.

19. Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 2018;19(6):e295-e304. doi: 10.1016/s1470- 2045(18)30095-0.

20. Jain A, Song R, Wakeland EK, Pasare C. T cell-intrinsic IL-1R signaling licenses effector cytokine production by memory CD4 T cells. Nat Commun. 2018;9(1):3185. doi: 10.1038/s41467-018-05489-7.

  1. Alspach E, Lussier DM, Schreiber RD. Interferon γ and its

    important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb Perspect Biol. 2019;11(3):a028480. doi: 10.1101/cshperspect.a028480.

  2. Amôr NG, de Oliveira CE, Gasparoto TH, Vilas Boas VG, Perri G, Kaneno R, et al. ST2/IL-33 signaling promotes malignant development of experimental squamous cell carcinoma by decreasing NK cells cytotoxicity and modulating the intratumoral cell infiltrate. Oncotarget. 2018;9(56):30894- 904. doi: 10.18632/oncotarget.25768.

  3. Calvo J, Martínez N, Etxagibel A, Calleja S, Sáez-Torres C, Sedeño M, et al. Allelic frequencies of polymorphic variants of cytokine genes (IL1A, IL1B, IL1RN, IL6, IL10, IL12p40, and IFNG) in a Spanish population. Inmunologia. 2002;21(2):76-86.

  4. Queiroz MAF, Azevedo VN, da Silva Graça Amoras E, Moura TCF, de Oliveira Guimarães Ishak M, Ishak R, et al. IFNG+874A/T polymorphism among asymptomatic HTLV- 1-infected individuals is potentially related to a worse prognosis. Front Microbiol. 2018;9:795. doi: 10.3389/ fmicb.2018.00795.

  5. Campbell MC, Smith LT, Harvey J. Population genetic evidence for positive and purifying selection acting at the human IFN-γ locus in Africa. Genes Immun. 2019;20(2):143- 57. doi: 10.1038/s41435-018-0016-1.

  6. 26 Halpin DM, Kerkhof M, Soriano JB, Mikkelsen H, Price DB. Eligibility of real-life patients with COPD for inclusion in trials of inhaled long-acting bronchodilator therapy. Respir Res. 2016;17(1):120. doi: 10.1186/s12931-016-0433-5.

  7. Hashemi-Bajgani S-M, Samareh Fekri M, Zeydabadi H, Rahmatian M, Amirkhosravi A. The relationship of serum levels of vascular endothelial growth factor with disease severity and the number of exacerbations in COPD patients. J Kerman Univ Med Sci. 2017;24(3):184-9.

  8. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215. doi: 10.1093/ nar/16.3.1215.

  9. Ye S, Dhillon S, Ke X, Collins AR, Day IN. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 2001;29(17):E88-8. doi: 10.1093/ nar/29.17.e88.

  10. Shaker OG, Nassar YH, Nour ZA, El Raziky M. Single- nucleotide polymorphisms of IL-10 and IL-28B as predictors of the response of IFN therapy in HCV genotype 4-infected children. J Pediatr Gastroenterol Nutr. 2013;57(2):155-60. doi: 10.1097/MPG.0b013e31828febf0.

  11. McDaniel DO, Barber WH, Nguyan C, Rhodes SW, May WL, McDaniel LS, et al. Combined analysis of cytokine genotype polymorphism and the level of expression with allograft function in African-American renal transplant patients. Transpl Immunol. 2003;11(1):107-19. doi: 10.1016/s0966- 3274(02)00171-5.

  12. Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356(6337):513-9. doi: 10.1126/science.aal3535.

  13. Huang AX, Lu LW, Liu WJ, Huang M. Plasma inflammatory cytokine IL-4, IL-8, IL-10, and TNF-α levels correlate

with pulmonary function in patients with asthma-chronic obstructive pulmonary disease (COPD) overlap syndrome. Med Sci Monit. 2016;22:2800-8. doi: 10.12659/msm.896458.

34. Sangil A, Arranz MJ, Güerri-Fernández R, Pérez M, Monzón H, Payeras A, et al. Genetic susceptibility to invasive pneumococcal disease. Infect Genet Evol. 2018;59:126-31. doi: 10.1016/j.meegid.2018.01.024.

35. Larocca N, Moreno D, Garmendia J, Toro F, Sanctis JD. Inflammatory gene polymorphisms in asthma and chronic obstructive pulmonary disease in Venezuela. Eur Respir J. 2015;46(Suppl 59):PA854. doi: 10.1183/13993003. congress-2015.PA854.

36. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest. 2000;117(4):1162-72. doi: 10.1378/chest.117.4.1162.

37. Liao N, Zhao H, Chen ML, Xie ZF. Association between the TGF-β1 polymorphisms and chronic obstructive pulmonary disease: a meta-analysis. Biosci Rep. 2017;37(4):BSR20170747. doi: 10.1042/bsr20170747.

38. Gong Y, Fan L, Wan H, Shi Y, Shi G, Feng Y, et al. Lack of association between the TGF-β1 gene and development of COPD in Asians: a case-control study and meta-analysis. Lung. 2011;189(3):213-23. doi: 10.1007/s00408-011-9294-3.

39. Zhang L, Chang WW, Ding H, Su H, Wang HY. Transforming growth factor-β1 polymorphisms and chronic obstructive pulmonary disease: a meta-analysis. Int J Tuberc Lung Dis. 2011;15(10):1301-7. doi: 10.5588/ijtld.10.0295.

40. Celedón JC, Lange C, Raby BA, Litonjua AA, Palmer LJ, DeMeo DL, et al. The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet. 2004;13(15):1649-56. doi: 10.1093/hmg/ddh171.

41. Ogawa E, Ruan J, Connett JE, Anthonisen NR, Paré PD, Sandford AJ. Transforming growth factor-beta1 polymorphisms, airway responsiveness and lung function decline in smokers. Respir Med. 2007;101(5):938-43. doi: 10.1016/j.rmed.2006.09.008.

42. Ito M, Hanaoka M, Droma Y, Hatayama O, Sato E, Katsuyama Y, et al. The association of transforming growth factor beta 1 gene polymorphisms with the emphysema phenotype of COPD in Japanese. Intern Med. 2008;47(15):1387-94. doi: 10.2169/internalmedicine.47.1116.

43. Mandegary A, Saeedi A, Eftekhari A, Montazeri V, Sharif E. Hepatoprotective effect of silyamarin in individuals chronically exposed to hydrogen sulfide; modulating influence of TNF-α cytokine genetic polymorphism. Daru. 2013;21(1):28. doi: 10.1186/2008-2231-21-28.

44. Alcorn JF, Rinaldi LM, Jaffe EF, van Loon M, Bates JH, Janssen- Heininger YM, et al. Transforming growth factor-beta1 suppresses airway hyperresponsiveness in allergic airway disease. Am J Respir Crit Care Med. 2007;176(10):974-82. doi: 10.1164/rccm.200702-334OC.

45. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101(4):890-8. doi: 10.1172/ jci1112.

46. Di Stefano A, Coccini T, Roda E, Signorini C, Balbi B, Brunetti G, et al. Blood MCP-1 levels are increased in chronic obstructive pulmonary disease patients with prevalent emphysema. Int J Chron Obstruct Pulmon Dis. 2018;13:1691- 700. doi: 10.2147/copd.s159915.