Document Type : Original Article

Authors

1 Assistant Professor of Biotechnology, Human Vaccines and Sera Dept, Razi Vaccine and Sera Research Institute, Karaj, Iran

2 Researcher, Pharmaceutical Branch of Islamic Azad University of Tehran, Tehran, Iran

3 Associate professor of Biochemistry, Human Vaccines and Sera Dept, Razi Vaccine and Sera Research Institute, Karaj, Iran

4 Assistant professor of Pharmaceutics, Research and Development Dept, Hakim Pharmaceutical Company

Abstract

Background & Aims: In recent years, the feasibility of hydrophilic nanoparticles has been broadly investigated for use in drug delivery and therapeutic systems. Due to the problems of traditional adjuvants, in this study Agkistrodon halys (Ah) Snake venom was loaded in chitosan nanoparticles (CS NPs) in order to be used as an advanced adjuvant and antigen delivery system in antidote production industry.

Methods: CS NPs containing Ah venom were prepared using ionic gelation and crosslinker method. In this study, polymer concentration, cross-linker concentration, particles size, particle size distribution, zeta potential, particles shape and surface characteristics, loading efficiency, loading capacity, and particles structure were optimized.

Results: Optimum concentration achieved were chitosan 2mg/ml and cross-linker 1mg/ml and Agkistrodon Halys snake venum 500 mg/ml. Mean particle size, polydispersity index (PDI), and zeta potential of of venom-loaded CS NPs were respectively 129 nm, 0.418 and 41 mV. The loading capacity (LC) and loading efficiency (LE) were 82±1.9 and 88±2.1, respectively. Fourier transform infrared spectroscopy of nanoparticles showed between chitosan and crosslinker. An initial burst release and second slow release up to 96 hours was observed.

Conclusion: The obtained results suggested that venom-loaded CS NPs could be a suitable alternative to conventional adjuvant for manufacturing antivenom.

Keywords

  1. Jain KK. Nanophamaceuticals. In: Jain KK, Editor. The handbook of nanomedicine. Berlin, Germany: Springer Science & Business Media; 2008. p. 119-60.
  2. Shahbazi MA, Hamidi M, Peymani P. Interaction of chitosan, a natural polymer used in nanodrug/gene delivery, with Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). The Internet Journal of Nanotechnology 2008; 2(2): 1-7.
  3. Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res 1998; 15(9): 1326-31.
  4. Bowman K, Leong KW. Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine 2006; 1(2): 117-28.
  5. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2004; 100(1): 5-28.
  6. Lai WF, Lin MC. Nucleic acid delivery with chitosan and its derivatives. J Control Release 2009; 134(3): 158-68.
  7. Nwe N, Furuike T, Tamura H. The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from gongronella butleri. Materials 2009; 2(2): 374-98.
  8. Borges O, Silva M, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A. Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. Int Immunopharmacol 2008; 8(13-14): 1773-80.
  9. Cui Z, Mumper RJ. The effect of co-administration of adjuvants with a nanoparticle-based genetic vaccine delivery system on the resulting immune responses. Eur J Pharm Biopharm 2003; 55(1): 11-8.
  10. Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of AL and CA compounds. In: Powell M, Newman M, Burdman JR, Editors. Vaccine design: the subunit and adjuvant approach. New York, NY: Plenum Press; 1995. p. 229-48.
  11. Mohammadpourdounighi N, Behfar A, Ezabadi A, Zolfagharian H, Heydari M. Preparation of chitosan nanoparticles containing Naja naja oxiana snake venom. Nanomedicine 2010; 6(1): 137-43.
  12. Avadi MR, Sadeghi AM, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R, et al. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine 2010; 6(1): 58-63.
  13. Rezaei Mokarram A, Alonso M. Preparation and evaluation of chitosan nanoparticles containing Diphtheriatoxoid as new carriers for nasal vaccine delivery in mice. Archives of Razi Institute 2006; 61(1): 13-25.
  14. Mohammadpour Dounighi N, Eskandari R, Avadi MR, Zolfagharian H, Mir Mohammad Sadeghi A, Rezayat M. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J Venom Anim Toxins incl Trop Dis 2012; 18(1): 44-52.
  15. Mohammadpour Dounighi N, Damavandi M, Zolfagharian H, Moradi S. Preparing and characterizing chitosan nanoparticles containing hemiscorpius lepturus scorpion venom as an antigen delivery system. Archives of Razi Institute 2012; 67(2): 145-53.
  16. Mohammadpour Dounighi N, Yazdizadeh R, Zolfagharian H. A new antigen delivery vehicle candidate: Orthochirus iranus scorpion venom entrapped in chitosan nanoparticles. British Journal of Pharmaceutical Research 2015; 7(4): 264-75.
  17. Ghorban Dadrass O, Mir Mohammad Sadeghi A, Farhangi N, Forouhar N, Mohammadpour N, Avadi MR. Preparation, characterization and in vitro studies of chitosan nanoparticles containing androctonus crassicauda scorpion venom. Journal of Applied Chemical Research 2013; 7(3): 35-46.
  18. Calvo P, Remuñán-López C, Vila-Jato JL, José Alonso M. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 1998; 63(1): 125-32.
  19. Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics 2003; 250(1): 215-26.
  20. Borges O, Borchard G, Verhoef JC, de Sousa A, Junginger HE. Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm 2005; 299(1-2): 155-66.
  21. Farhadian A, Dounighi NM, Avadi M. Enteric trimethyl chitosan nanoparticles containing hepatitis B surface antigen for oral delivery. Hum Vaccin Immunother 2015; 1-8.
  22. Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002; 249(1-2): 139-47.
  23. Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 1999; 16(10): 1576-81.
  24. Finney DJ. The median lethal dose and its estimation. Arch Toxicol 1985; 56(4): 215-8.
  25. Possani LD, Fletcher PL, Alagon AB, Alagon AC, Julia JZ. Purification and characterization of a mammalian toxin from venom of the Mexican scorpion, Centruroides limpidus tecomanus Hoffmann. Toxicon 1980; 18(2): 175-83.
  26. Dustgani A, Vasheghani-Farahani E, Imani M. Determination of the optimum conditions for production of chitosan nanoparticles. Polymer Science and Technology 2008; 20(5): 457-64.
  27. Domard A. Determination of N-acetyl content in chitosan samples by c.d. measurements. International Journal of Biological Macromolecules 1987; 9(6): 333-6.
  28. Harris R, Lecumberri E, Mateos-Aparicio I, Meng-bar M, Heras A. Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydrate Polymers 2011; 84(2): 803-6.
  29. Sarei F, Mohammadpour Dounighi N, Zolfagharian H, Khaki P, Bidhendi SM. Alginate Nanoparticles as a Promising Adjuvant and Vaccine Delivery System. Indian J Pharm Sci 2013; 75(4): 442-9.
  30. Saraei F, Mohamadpour Dounighi N, Zolfagharian H, Moradi Bidhendi S, Khaki P, Inanlou F. Design and evaluate alginate nanoparticles as a protein delivery system. Archives of Razi Institute 2013; 68(2): 139-46.
  31. Noble JE, Knight AE, Reason AJ, Di Matola A, Bailey MJ. A comparison of protein quantitation assays for biopharmaceutical applications. Mol Biotechnol 2007; 37(2): 99-111.
  32. van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Coos VJ, Junginger HE. Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine 2003; 21(13-14): 1400-8.
  33. Yuan Q, Shah J, Hein S, Misra RD. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater 2010; 6(3): 1140-8.
  34. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 2010; 67(3): 217-23.