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Abstract 

Background: Epidemiological studies show that computed tomography (CT) is one of the 

main sources of ionizing radiations. Shielding of radiosensitive organs is one of the dose 

reduction methods. This study aimed to assess the eye lens dose reduction and image quality 

resulting from the use of radio-protective bismuth shield in brain CT imaging. 

Methods: Bismuth shields were constructed with two different thicknesses (0.02 and 0.06 

cm) and two different geometries including: direct contact with eye (contact setup) and 4 cm 

above the eye (distant setup). The lens dose was determined using thermo luminescent 

dosimeter (TLD)-207A chips inside an anthropomorphic head phantom during the CT 

examinations. Noise, SNR (signal to noise ratio), and CNR (contrast to noise ratio) were 

calculated to evaluate the image quality.  

Results: The lens dose reduction was higher using the shield with 0.06 cm thickness and in 

‘contact setup’. On the other hand, the bismuth shield with the thickness of 0.02 cm and in 

‘distant setup’ had lower dose reduction and better image quality. 

Conclusion: Bismuth shield with the thickness of 0.02 cm and in ‘distant setup’ could 

decrease the lens dose to the acceptable levels, while providing a better image quality in 

comparison with the contact shield setup and with 0.06 cm thickness. Using the bismuth 

shield is a simple and low cost method for protecting the eye lens in brain CT scans with 

conventional scanners especially in low income or developing countries. 
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Introduction 

In diagnostic and therapeutic applications of ionizing 

radiation, the patient dose is one of the great developing 

concerns due to the probabilities of radiation-induced harmful 

effects like cancers. Epidemiological studies conducted in the 

USA showed that computed tomography (CT) is one of the 

main ionization exposure sources in clinical situations. Brain 

CT constituted approximately 28.4% (19 million brain CT 

scans) of CT examinations (67 million CT scans) (1). The eye 

lens has been considered as one of the most known 
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radiosensitive tissues. Cataract as one of the side effects of 

ionizing radiation is used to describe any detectable changes in 

the healthy and transparent lenses. These effects are variable 

from the small spots to the complete pacification of the lens 

that leads to blindness. It is well known that cataract could 

appear after sufficient ionizing radiation exposure (such as 

charged particles, neutrons, X and gamma rays etc.) (2-4). A 

lens could be considered as a reproducible tissue with a special 

cellular system that has no cell elimination mechanism. 

Ionizing radiations can induce damages, which resulted in 

production of non-natural fibers. These non-natural fibers did 

not remove from the lens and migrate toward the rear lens 

poles. The cataract appears due to the lack of transparency in 

fibers (2, 3, 5). Some risk factors which are involved in the 

lens opacity development include: age, diabetes, use of 

corticosteroids, smoking, and ultraviolet radiation exposure. A 

fully detailed mechanism of the radiation-induced cataract is 

not known yet (6,7). 

Previous studies reported that lenses have a nonlinear 

dose-response curve with a specified threshold (8, 9). After 

low dose exposures, induced opacity remains at a constant 

level which has a negligible effect on the vision. At higher 

dose exposures, the induced opacity deteriorates until it leads 

to blindness. The incident probability of the progressive 

cataract increased by increasing of radiation dose (2,3). 

The exposure threshold to incident radiation-induced 

cataracts in single (single brief exposure) and fractionated dose 

irradiation (high and long exposure) are 500 - 2000 mGy and 

5000 mGy, respectively reported by International 

Commission on Radiation Protection (ICRP) in 2007 (10). In 

April 2011, ICRP recommended the dose limit of 20 mSv per 

year for the lens of the eye. The previous dose limit for the eye 

lens was 150 mSv per year. However, for members of the 

general public, the dose limit was not determined (11). 

Recent studies challenge the ICRP reports seriously (12). 

It was noted that cataracts appear in more than 20-30% of 

patients after 1Gy or lower exposure. These results showed 

that there is no threshold for the cataract occurrence, or if any, 

it ranged from 0 to 0.8 Gy (13-16). In another study, it was 

suggested that there is no certain threshold for cataract 

formation (12). Therefore, dose reduction methods have a 

critical role in brain CT examinations. Several techniques have 

been well approved to reduce the lens dose in the brain CT 

(such as gantry tilt technique and tube current modulation), 

except the available commercial reconstruction algorithms 

(e.g. model-based iterative reconstruction method).  

Tube current modulation and gantry tilt techniques are 

preferred to the bismuth shield due to their proper lens dose 

reduction while maintaining image quality. However, these 

methods are not available in most of the commercial scanners 

due to their cost of implantation and attenuation 

characteristics. The dose reduction technique with a high 

attenuation filter (like bismuth) could be a fair alternative 

method for CT examinations (17,18). The artifact is 

considered as the main problem of the bismuth shielding 

method (19,20). In this study by changing the composition 

and thickness of the bismuth shield, the efficiency of the new 

eye shields was evaluated. Our aim was to find an optimal eye 

lens shield with effective protection for the patient’s eye lenses 

and fewer image artifacts or noise in comparison with 

common bismuth shields.  
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Materials and methods  

Construction of the eye shields 

Eye shields were designed and built based on the 

thickness of 1T that reduces primary radiation by 63%. Two 

different eye shields of 1T and 3T were constructed using 

bismuth powder distributed homogenously in silicone gel. The 

silicone was chosen as the base for the radio-protective lens 

shield, due to its low cost, flexibility and durability. A mold 

made of Plexiglas with dimensions of 14 × 3 × 1 cm3 was 

used to form the radio-protective eye shields. The mold used 

for the construction of the eye shields is shown in Figure 1. 

Shields thicknesses were 0.0191 and 0.0573 centimeters 

without considering the base gel and 0.02 and 0.06 

centimeters with considering base gel for 1T and 3T shields 

respectively. The dimensions of these shields were 3 × 14 

cm2.  

 

 

Figure 1. The mold made of Plexiglas used for the construction of the eye shields 

 

The required mass of the bismuth powders were 8.22 and 

24.65 grams for 1T and 3T shields, respectively. The bismuth 

powder (CAS 7440-69-9, molar mass 208.98 g/mol, Merck 

Co., Germany) was mixed in 25 grams of the industrial silicon 

using a slow speed mixer (300-500 rpm). Finally, 5% silicon 

hardener with identification number 3335 (or 1 g) was added 

to the medium and transferred immediately into the prepared 

mold. The distributions of metal powders inside the shield slab 

were evaluated using a SEM system (XL30, Philips Co. 

Massachusetts, USA). 

The attenuation efficiencies and CT image qualities were 

obtained using the lens shields with mentioned thicknesses on 

an anthropomorphic head phantom and CTDI phantom. 

 

X-ray computed tomography (CT) 

Imaging of the anthropomorphic head phantom and CTDI 

phantom was performed using a 16-slice CT scanner 
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(Brilliance, Philips, Germany) with radiation and technical 

parameters including: kVp= 120, mA=250, resolution=3mm, 

pitch=0.313, rotation time=0.5sec. 

 

Evaluation of the lens dose during the CT examinations 

The lens doses were determined using thermo luminescent 

dosimeter (TLD)-207A (LiF:p,CuMg, PTW, Germany) chips 

inside the anthropomorphic head phantom during the CT 

examinations. Two blocks made of foam were developed for 

positioning of the thermo luminescent dosimeters on the right 

and left eyes as shown in Figure 2. 

 

 

Figure 2. The embedded foam blocks for positioning of the thermo luminescent dosimeters on the right and left eyes of the anthropomorphic head 

phantom. a) Anthropomorphic head phantom without embedded foam blocks. b) Anthropomorphic head phantom with embedded foam blocks 

 

The lens doses were determined in two scanning 

geometries: 1) the lens shield placed directly on the face 

(Contact setup) 2) the lens shield placed at 4 cm above the eye 

(distant shield setup). For each CT examination with eye 

shields, the same scanning geometry was provided using an 

in-house developed holder made of foam. The attenuation 

characteristics of the foams are similar to air. So, it has the 

least effect on the image quality and lens dose values. 

 

 

Evaluation of the image quality  

The image quality of the CT data was evaluated using a 

CTDI head phantom. The image quality was studied for both 

of scanning geometries. Seventy regions of interests (ROIs) 

with the dimension of 3x3 pixels were selected along the 

favored direction. In each ROI, the average and standard 

deviation of the signal intensities (Hounsfield unit value) were 

considered as the signal and noise values, respectively. The 

SNR, CNR and noise parameters were measured as the image 
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quality indices. SNR and CNR parameters were defined by 

Eqs 1 and 2, respectively: 

SNR=
S̅

Noise
                               (1) 

CNR=
I
phantom

−I
air

√σ
2

phantom
+σ

2
air

       (2) 

Where S̅ and I are averaged Hounsfield units in each of 

the divided ROIs and σ represents the standard deviation of 

these ROIs.  

The image quality of the CT data was evaluated along 

three profiles (included left, central and right profiles) in the 

anterior-posterior direction with an in-house MATLAB (ver. 

2010a, The MathWorks TM, Natick, Massachusetts, United 

States) based code.  

The phantom surface was also divided into three regions 

included top, medium and bottom sides. The defined areas 

and extracted profiles in the CT images for both of “Contact” 

and “distant shield” setups are shown in Figure 3. 

 

Results  

Construction of the eye shields 

Approximately uniform distributions of the bismuth metal 

powders could be seen in the constructed shields (Figure 4).  

 

 

Figure 3. Defined areas and extracted profiles in the CT images for image quality assessment. a) “Contact” setup. b) “Distant shield” setup. 

 

 

 

Figure 4. The distribution of bismuth metal powders in the silicone base for two eye shields with the magnification of 500X. a) The eye shield with the 

thickness of 0.02 cm. b) The eye shields with the thickness of 0.06 cm. 
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Evaluation of the lens dose during the CT examinations 

using the lens shields  

Entrance skin doses (ESD) of the left and right eye lenses 

resulted from the CT examinations with different thicknesses 

of 0.02 cm and 0.06 cm in two scanning geometries included 

“Contact” and “Distant shield” setups are listed in Table 1.  

 

 

Table 1. Entrance skin dose values of the left and right eye lenses resulted from the CT examinations with and without the lens shields 

Thickness 
Studied 

position 
Shielding status ESD (mSv) 

ESD relative 

attenuation (%) 

0
.0

2
 c

m
 B

i Left eye 

Without Shielding 18.85±1.37 - 

Distant shield 12.20±0.46 35.24±5.30 

Contact 11.76±0.42 37.63±5.04 

Right eye 

Without Shielding 19.13±1.39 - 

Distant shield 13.16±0.87 31.25±6.74 

Contact 11.48±0.69 40.02±5.66 

0
.0

6
 c

m
 B

i Left eye 

Without Shielding 18.85±1.37 - 

Distant shield 10.76±0.70 42.91±5.57 

Contact 10.30±0.63 45.33±5.20 

Right eye 

Without Shielding 19.13±1.39 - 

Distant shield 10.21±0.64 46.63±5.11 

Contact 9.35±1.49 51.13±8.53 

 

Evaluation of the image quality using the lens shields  

The average SNRs, CNRs and noise values of the studied 

profiles (included left, central, and right profiles) are listed in 

Tables 2, 3 and 4, respectively for eye shields with the 

thicknesses of 0.02 cm (1T) and 0.06 cm (3T). 

 

Table 2. The average SNRs of the studied profiles (included left, central, and right profiles) for the CT data obtained using the lens shields with the 

thicknesses of 0.02 cm and 0.06 cm 

 Shielding 

Left Center Right 

𝑺𝑵𝑹̅̅ ̅̅ ̅̅  % Change 𝑺𝑵𝑹̅̅ ̅̅ ̅̅  % Change 𝑺𝑵𝑹̅̅ ̅̅ ̅̅  % Change 

0
.0

2
 c

m
 

B
i 

Without Shielding 536.31 - 516.67 - 603.67 - 

Contact 419.07 -21.86 420.58 -18.60 387.07 -35.88 

distant shield 445.50 -16.93 373.98 -27.62 484.26 -19.78 

0
.0

6
 c

m
 

B
i 

Without Shielding 536.31 - 516.67 - 603.67 - 

Contact 227.02 -57.67 211.02 -59.16 229.53 -61.98 

distant shield 251.17 -53.17 238.69 -53.80 292.42 -51.56 
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Table 3. The average CNRs of the studied profiles (included left, central, and right profiles) for the CT data obtained using the lens shields with the 

thicknesses of 0.02 cm and 0.06 cm 

 Shielding 

Left Center Right 

𝑪𝑵𝑹̅̅ ̅̅ ̅̅  % Change 𝑪𝑵𝑹̅̅ ̅̅ ̅̅  % Change 𝑪𝑵𝑹̅̅ ̅̅ ̅̅  % Change 

0
.0

2
 c

m
 

B
i 

Without Shielding 329.88 - 327.04 - 339.91 - 

Contact 225.44 -31.66 215.75 -34.03 215.90 -36.48 

distant shield 269.45 -18.32 248.58 -23.99 278.63 -18.03 

0
.0

6
 c

m
 

B
i 

Without Shielding 329.88 - 327.04 - 339.91 - 

Contact 78.59 -76.17 77.68 -76.25 79.99 -76.47 

distant shield 164.08 -50.26 155.86 -52.34 172.20 -49.34 

 

Table 4. The noise values of the studied profiles (left, central, and right profiles) for the CT data obtained using the lens shields with the thicknesses 

of 0.02 cm and 0.06 cm 

 Shielding 

Left Center Right 

𝑵𝒐𝒊𝒔𝒆̅̅ ̅̅ ̅̅ ̅̅  % Change 𝑵𝒐𝒊𝒔𝒆̅̅ ̅̅ ̅̅ ̅̅  % Change 𝑵𝒐𝒊𝒔𝒆̅̅ ̅̅ ̅̅ ̅̅  % Change 

0
.0

2
 c

m
 

B
i 

Without Shielding 2.52 - 2.56 - 3.32 - 

Contact 3.37 33.54 4.39 71.22 3.77 13.63 

distant shield 3.50 38.93 5.14 100.55 3.17 -4.36 

0
.0

6
 c

m
 

B
i 

Without Shielding 2.52 - 2.56 - 3.32 - 

Contact 7.17 184.48 8.60 235.51 6.55 97.49 

distant shield 5.53 119.23 6.19 141.68 5.12 54.23 

 

Discussion  

Dose reduction in CT imaging has different methods. 

They include automatic exposure control or tube current 

modulation (TCM), using filters, gated irradiation, increasing 

pitch value, sequential scanning, gantry tilting, and voltage 

reduction (21). Angular and longitudinal TCM methods 

reduce the dose parameters (CTDIvol) based on the attenuation 

on different angular and longitudinal projections (22). These 

methods reduce the radiation dose in all the regions of the 

selected slice and they do not differentiate between various 

organs. It is necessary to mention that using shields is 

independent from the angular or longitudinal TCM reduction 

methods. In the TCM methods, tube current is regulated based 

on the attenuation of the related slices and all tissues 

positioned on these slices receive lower doses compared to the 

standard CT scan. On the other hand, when the shields are 

positioned nearly in front of a specific organ or tissue, this 

organ will receive a significant lower dose in comparison with 

other organs in the same slices. Therefore, using the TCM 

could reduce the slice/slices doses that have lower attenuation 
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and using filter can reduce the specific tissue dose that is 

positioned near the shield. Shields and angular (or 

longitudinal) TCM methods can be used with each other 

during the CT scan, but the shield must be removed during 

scout or localizer imaging for determining the attenuation of 

different slices and angular projections. In the on-line angular 

TCM method which uses the previous projection of 

attenuation values for current modulation in subsequent 

projections, it seems that using shields will affect the TCM 

and increase the tube current in shielded relevant slices, 

therefore it is better to ignore the use of shields in real time 

TCM. Organ-based TCM is another TCM method that 

reduces the specific structure dose by reducing the exposure 

about 50% in 120 degrees around the structure, while 

increases the exposure about 25% in remaining 240 degrees. 

The positioning of the patient is critically important in this 

method. The patient’s central line must be the same as the 

scanner’s central line. Misalignments will lead to big errors 

and overexposing of radiosensitive structures in this method. 

Furthermore, apart from the good positioning of the patient, 

the availability of CT scanners with organ-based TCM is rare 

due to the high cost of these scanners especially in low income 

or developing countries. Thus, using the bismuth shield is a 

simple and low cost method for protecting the eye lens in 

brain CT scans with conventional scanners.  

In this study, the effect of the lens shielding was evaluated 

regarding to the dose reduction and image quality in two 

different geometries and with two different thicknesses. 

Lower lens doses were achieved in the “contact” setup in 

comparison with the “Distant shield” setup. By increasing the 

thickness from 0.02 cm to 0.06 cm for two scanning 

geometries, the dose reduction percentage increased from 

38.82±5.36% to 48.23±7.06% and from 33.24±6.06% to 

44.77±5.34%, respectively.  

Higher degeneration was observed for SNR and CNR 

parameters where the eye shield was placed directly on the 

face. Therefore, it seems better to use the eye shields placed at 

the 4 cm distance from the face. It can be concluded that a 

shield with lower thickness produces a better image quality in 

terms of SNR and CNR. Based on the clinical application of 

the CT data, we should decide between the dose reduction and 

the image quality (included CNR reduction of 30-45%, and 

SNR reduction of 25-40%), due to the thickness increasing 

from 0.02 cm to 0.06 cm for the eye shield. Higher CNR and 

SNR values were observed for the lateral profiles in 

comparison to the central one. But the noise was lower in the 

lateral profiles. 

For the eye shields in the “Contact” setup, the signal 

intensities in the central and lateral profiles increased by 

increasing the shield thickness from 0.02 cm to 0.06 cm 

(about 11% and 8%, respectively). In the “distant shield” 

setup, the signal intensities were also increased by 3% in the 

central and lateral profiles. In the upper part of the profiles, a 

significant signal increase was observed. Lower signal 

intensities were observed for the lateral profile than the central 

one. The artifact in thicker shields has been reported 

previously (18,22-24). There were no artifacts in the CT data 

when the lens shields were placed on the distant shield setup 

(at the 4 cm distance from the face). 

Several studies have evaluated bismuth shielding as a dose 

reduction method (21,25-33). The reported dose reductions 

vary from 20% to 50% depending on the scanner, technique 

and shield design. Mendes et al (30) evaluated the dose 

reduction obtained with and without a bismuth shield covering 
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the eyes using the acrylic head phantom. The percentage dose 

reduction was 36%, verifying the dose reduction capabilities 

of bismuth eye shields. However, image quality was disrupted 

in these studies due to the bismuth shield structure. We used 

the bismuth powder in a silicone gel base for reducing the 

metal artifacts. 

In another study by Wang et al (22), the effect of the 

bismuth shield thickness was evaluated using both a single-

layer and double-layer of bismuth shielding on a phantom. 

They reported a 26.4% and 42.4% dose reduction for the 

single and double-layered shields, respectively. While this 

study confirms that increasing the bismuth shield thickness 

will increase the dose reduction, but the image quality will be 

disrupted. This finding is consistent with our results.  

Hopper et al (34), studied the ability of bismuth in 

reducing radiation to the lens during the routine cranial CT. In 

the phantom study, the eye dose was reduced by 48.5%, 

59.8%, and 65.4% using 1T, 2T, and 3T, respectively. In the 

patient study, average dose reductions of 39.6%, 43.5%, and 

52.8% were obtained using 1T, 2T, and 3T thicknesses of 

bismuth shield, respectively (34). 

Several studies recommend not using bismuth shielding 

for the impact of the shielding on the image quality due to the 

produced artifacts which extend into the brain, affecting 

mainly the orbits, inferior frontal lobe and anterior temporal 

regions (19,24). In some cases, these artifacts not only make 

images inappropriate for diagnostic purposes, but also 

increases the number of scans (19,34). Several studies have 

shown a drift in CT numbers between 50% and 65% 

(22,25,27). In addition, there are also many studies that 

support the use of bismuth, suggesting no significant impact 

on the image quality (19,20,27). Majority of previous studies 

suggest that creating a small gap between the eye and the 

shield is a good approach to preserve the image quality to an 

acceptable diagnostic level (9,17,19,25,31). For instance, in a 

study by Raissaki et al (31), by using the folded gauzes for 

elevating the shield, artifacts were reduced to a negligible 

level. Distances of 5, 10 and 20 millimeters were evaluated 

and a dose reduction of 32%, 30% and 29% were reported 

respectively, compared to the 32% dose reduction following 

direct placement of the shield. We found similar results with 

previous investigations regarding a small gap for artifact 

reduction with a new design of bismuth shield. 

 

Conclusion  

In this study, the image quality of the CT scans using the 

bismuth shields with the thickness of 1T and 3T was 

evaluated. The attenuation characteristics and the CT image 

qualities obtained using the lens shields were evaluated with 

different thicknesses of 0.02 cm and 0.06 cm. 1T eye shield in 

‘Distant setup’ could decrease the lens dose magnitudes at an 

acceptable level, while providing a better image quality in 

comparison to the “contact shield” setup. According to the 

results, using the bismuth shield is a simple and low-cost 

method for protecting the eye lens in brain CT scans with 

conventional scanners especially in low income or developing 

countries. 
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