Different Effects of Acute and Chronic Strenuous Physical Exercise on Superoxide Dismutase (SOD), Malondialdehyde (MDA) Levels, and Sperm Quality of the Wistar Rats

Document Type : Original Article


1 Department of Sport Science, Faculty of Sport Science, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia

2 Department Biomedical Science, Faculty of Medicine, Universitas Islam Sultan Agung Semarang, Jawa Tengah, Indonesia

3 Department of Education Primary School Teachers, Faculty of Education, Universitas Muhammadiyah Purwokerto, Jawa Tengah, Indonesia

4 Department of Physiotherapy, Faculty of Health Science, Universitas Muhammadiyah Surakarta, Jawa Tengah, Indonesia

5 Department of Physiotherapy, Faculty of Health Science, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia


Background: Normal exercise can improve human physical abilities, but strenuous exercise can damage human cells. Strenuous exercise causes oxidative stress to the body. In order to determine the level of oxidative stress, it is important to check the levels of Superoxide Dismutase (SOD) and Malondialdehyde (MDA) in the body. SOD is the first line of defence in fighting against the oxidative stress, whereas MDA is the result of oxidative stress cell damage in the body. The sperm cell is the one that is affected by oxidative stress. This research aimed to investigate the differences in the effects of acute and chronic strenuous exercise on SOD production, MDA, and sperm quality.
Methods: The research was based on experimental design with post-test only control group design with Wistar rats. Eighteen male Wistar rats were randomly divided into 3 groups (n = 6). Group I: Normal control, Group II: Rats were treated to swim for about 25-40 minutes until they were drowning for 1 day (acute strenuous physical exercise), and Group III: Rats were treated to swim for about 25-40 minutes until they were drowning for almost every day for 2 weeks (chronic strenuous physical exercise). Examination of SOD and MDA levels was done using spectrophotometry, examination of sperm quality was done by looking at the morphology, motility, and sperm quantity through the light microscope at x1000 with haemocytometer.
Results: Chronic strenuous exercise significantly affects the decreasing SOD levels, increasing MDA levels, and decreasing sperm quality compared to the control group and acute strenuous exercise (P < 0.05).
Conclusion: According to the results of this study, the chronic strenuous exercise effects increase oxidative stress and sperm damage.


  1. Simpson RJ, Kunz H, Agha N, Graff R. Exercise and the regulation of immune functions. Prog Mol Biol Transl Sci. 2015; 135:355-80. doi: 10.1016/
  2. Norton K, Norton L, Sadgrove D. Position statement on physical activity and exercise intensity terminology. J Sci Med Sport. 2010; 13(5):496- doi: 10.1016/j.jsams.2009.09.008.
  3. Patel H, Alkhawam H, Madanieh R, Shah N, Kosmas CE, Vittorio TJ. Aerobic vsanaerobic exercise training effects on the cardiovascular system. World J Cardiol. 2017; 9(2):134-138. doi: 10.4330/wjc.v9.i2.134.
  4. Park SY, Kwak YS. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. J Exerc Rehabil. 2016; 12(2):113-7. doi: 10.12965/jer.1632598.299.
  5. Hackney AC, Lane AR. Exercise and the regulation of endocrine hormones. Prog Mol Biol Transl Sci. 2015; 135:293-311. doi: 10.1016/bs.pmbts.2015.
  6. Korsager Larsen M, Matchkov VV. Hypertension and physical exercise: The role of oxidative stress. Medicina (Kaunas). 2016; 52(1):19-27. doi: 10.1016/j.medici.2016.01.005. 
  7. Brooks K, Carter J. Overtraining, exercise, and adrenal insufficiency. J Nov Physiother. 2013; 3(125):11717. doi: 10.4172/2165-7025.1000125. 
  8. Nielsen HG, Oktedalen O, Opstad PK, Lyberg T. Plasma cytokine profiles in long-term strenuous exercise. J Sports Med (Hindawi Publ Corp). 2016; 2016:7186137. doi: 10.1155/2016/7186137. 
  9. Suzuki K. Exhaustive exercise-induced neutrophil-associated tissue damage and possibility of its prevention. J Nanomedine Biotherapeutic Discov. 2017; 7(2):23- doi: 10.4172/2155-983X.1000156.
  10. Ruzicic RD, Jakovljevic V, Djordjevic D. Oxidative stress in training, overtraining and detraining: from experimental to applied research. Serbian J Exp Clin Res. 2014; 17(4):343-8. doi:1515/sjecr-2016-0002.
  11. He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol. 2016; 7:486. doi: 10.3389/fphys.2016.00486. 
  12. Oliveira AN, Richards BJ, Slavin M, Hood DA. Exercise is muscle mitochondrial medicine. Exerc Sport Sci Rev. 2021; 49(2):67-76. doi: 10.1249/JES.0000000000000250.
  13. Xie W, Santulli G, Reiken SR, Yuan Q, Osborne BW, Chen BX, Marks AR. Mitochondrial oxidative stress promotes atrial fibrillation. Sci Rep. 2015; 5:11427. doi: 10.1038/srep11427. 
  14. Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, Gonelli A, Neri LM. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget. 2018; 9(24):17181-17198. doi: 10.18632/
  15. Yavari A, Javadi M, Mirmiran P, Bahadoran Z. Exercise-induced oxidative stress and dietary antioxidants. Asian J Sports Med. 2015; 6(1):e24898. doi: 10.5812/asjsm.24898. Epub 2015 Feb 20. 
  16. Ayala A, Munoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014; 2014:360438. doi: 10.1155/2014/360438. 
  17. Fitria, Triandhini RIN. R, Mangimbulude JC, Karwur FF. Merokok dan oksidasi DNA. Sains Med. 2013; 5(2):113-20. doi: 26532/sainsmed.
  18. Marrocco I, Altieri F, Peluso I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid Med Cell Longev. 2017; 2017:6501046. doi: 10.1155/2017/6501046.
  19. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018; 54(4):287-93. doi: 1016/j.ajme.2017.09.001.
  20. Harun I, Susanto H, Rosidi A. Pemberian tempe menurunkan kadar malondialdehyde (MDA) dan meningkatkan aktivitas enzim superoxide dismutase (SOD) pada tikus dengan aktivitas fisik tinggi. J Gizi dan Pangan. 2017; 12(3):211-6. doi: 25182/jgp.2017.12.3.211-216.
  21. Alahmar AT. Role of oxidative stress in male infertility: An updated review. J Hum Reprod Sci. 2019; 12(1):4-18. doi: 10.4103/jhrs.JHRS_150_18.
  22. Dewangga MW, Nasihun T, Isradji I. Dampak olahraga berlebihan terhadap kualitas sperma. J Penelit Kesehat Suara Forikes. 2021; 12(11):58-61. doi:33846/sf11215.
  23. Huang C, Cao X, Pang D, Li C, Luo Q, Zou Y, Feng B, Li L, Cheng A, Chen Z. Is male infertility associated with increased oxidative stress in seminal plasma? A-meta-analysis. Oncotarget. 2018; 9(36):24494-24513. doi: 10.18632/
  24. Azenabor A, Ekun AO, Akinloye O. Impact of inflammation on male reproductive tract. J Reprod Infertil. 2015; 16(3):123-9. PMID: 26913230.
  25. Rashki Ghaleno L, Alizadeh A, Drevet JR, Shahverdi A, Valojerdi MR. Oxidation of Sperm DNA and Male Infertility. Antioxidants (Basel). 2021; 10(1):97. doi: 10.3390/antiox10010097. 
  26. Huertas JR, Casuso RA, Agustín PH, Cogliati S. Stay fit, stay young: mitochondria in movement: The role of exercise in the new mitochondrial paradigm. Oxid Med Cell Longev. 2019; 2019:7058350. doi: 10.1155/2019/7058350. 
  27. Frazziano G, Champion HC, Pagano PJ. NADPH oxidase-derived ROS and the regulation of pulmonary vessel tone. Am J Physiol Heart Circ Physiol. 2012; 302(11):H2166-77. doi: 10.1152/
  28. Collin F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int J Mol Sci. 2019; 20(10):2407. doi: 10.3390/ijms20102407.
  29. Srivastava KK, Kumar R. Stress, oxidative injury and disease. Indian J Clin Biochem. 2015; 30(1):3-10. doi: 10.1007/s12291-014-0441-5.
  30. Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports Med. 2008; 38(5):401-23. doi: 10.2165/00007256-200838050-00004. 
  31. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015; 30(1):11-26. doi: 10.1007/s12291-014-0446-0. 
  32. Finsterer J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet Disord. 2012; 13:218. doi: 10.1186/1471-2474-13-218. 
  33. Yunarsa IPPA, Adiatmika IPG. Kadar antioksidan superoksida dismutase )SOD( hati tikus pada aktivitas fisik berat. J Med Udayana. 2018; 7(4):143-7.
  34. Fauziah PN, Maskoen AM, Yuliati T, Widiarsih E. Optimized steps in determination of Malondialdehyde (MDA) standards on diagnostic of lipid peroxidation. Padjadjaran J Dent. 2018; 30(2):136. doi: 24198/
  35. Shahidi F, Zhong Y. Lipid oxidation and improving the oxidative stability. Chem Soc Rev. 2010; 39(11):4067-79. doi: 10.1039/b922183m. 
  36. Ilyas EII, Utami TO, Siagian M, Santoso DIS, Prijanti AR. Effects of Moderate-Intensity Exercise Training on Stress Oxidative Marker: Malondialdehyde and Superoxide Dismutase Activity in Abdominal Aorta of Juvenile Rats. Int J Res -Granthaalayah. 2027;5(12):99–105. Doi: 10.29121/granthaalayah.v5.i12.2017.477
  37. Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014; 32(1):1-17. doi: 10.5534/
  38. Yi X, Tang D, Cao S, Li T, Gao H, Ma T, et al. Effect of different exercise loads on testicular oxidative stress and reproductive function in obese male mice. Oxid Med Cell Longev. 2020; 2020:3071658. doi: 10.1155/2020/3071658. 
  39. Jozkow P, Rossato M. The impact of intense exercise on semen quality. Am J Mens Health. 2017; 11(3):654-662. doi: 10.1177/1557988316669045.