Document Type : Original Article

Authors

1 Department of Biology, Payame Noor University, Tehran, Iran

2 Department of Statistics, Payame Noor University, Tehran, Iran

Abstract

Background: Many research studies have investigated the antimicrobial activity of nanoparticles and herbal extracts on pathogenic bacteria. The aim of this study was to evaluate the antibacterial activity of silver nanoparticles in combination with L. angusifolia leaf extract against Escherichia coli and Staphylococcus aureus using response surface methodology.
Methods: To evaluate the antibacterial activity of silver nanoparticles and L. angusifolia extract at different pH values against E.coli and S. aureus, the response surface methodology was used along with a central composite design. Agar well diffusion method was used to determine the antibacterial activity.  
Results: The results showed that the antibacterial activity of the combination of silver nanoparticles and L. angusifolia extract on E.coli (15.4 - 23.6 mm) was greater than that on S. aureus (11.7 – 21.6 mm). In addition, the antibacterial activity of the silver nanoparticles against E. coli and S. aureus was higher than that of L. angusifolia extract. The pH values had no effect on the antibacterial activity of the silver nanoparticles and L. angusifolia extract.
Conclusion: The findings of this study showed that the combination of silver nanoparticles and L. angusifolia extract could be used as a possible source of effective antibacterial agent in infections.

Keywords

  1. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017; 12:1227-1249. doi: 10.2147/IJN.S121956.
  2. Zarei M, Jamnejad A, Khajehali E. Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J Microbiol. 2014; 7(1):e8720. doi: 10.5812/jjm.8720.
  3. Nagy A, Harrison A, Sabbani S, Munson RS Jr, Dutta PK, Waldman WJ. Silver nanoparticles embedded in zeolite membranes: Release of silver ions and mechanism of antibacterial action. Int J Nanomedicine. 2011; 6:1833-52. doi: 10.2147/IJN. S24019.
  4. Sanchooli N, Saeidi S, Barani HK, Sanchooli E. In vitro antibacterial effects of silver nanoparticles synthesized using Verbena officinalis leaf extract on Yersinia ruckeri, Vibrio cholera and Listeria monocytogenes. Iran J Microbiol. 2018; 10(6):400-408. PMID: 30873268.
  5. Elkomy RG. Antimicrobial screening of silver nanoparticles synthesized by marine cyanobacterium Phormidium formosum. Iran J Microbiol. 2020; 12(3):242-248. PMID: 32685121;
  6. Nazoori ES, Kariminik. In Vitro evaluation of antibacterial properties of zinc oxide nanoparticles on pathogenic prokaryotes. Journal of Applied Biotechnology Reports. 2018; 5(4):162-165. doi:10.29252/JABR.05.04.05.
  7. Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012; 30(10):499-511. doi: 10.1016/j.tibtech.2012.06.004.
  8. Maghsoudy N, Aberoomand-Azar P, Tehrani MS, Husain SW, Larijani K. Biosynthesis of Ag and Fe nanoparticles using Erodium cicutarium; study, optimization, and modeling of the antibacterial properties using response surface methodology. J Nanostructure Chem. 2019; 9)3):203-216. doi: 10.1007/s40097-019-0311-z.
  9. Quintero-Quiroz C, Acevedo N, Zapata-Giraldo J, Botero LE, Quintero J, Zarate-Trivino D, et al. Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater Res. 2019; 23(1):1-15. doi: 10.1186/s40824-019-0173-y.
  10. Stankic S, Suman S, Haque F, Vidic J. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. J Nanobiotechnology. 2016; 14(1):73. doi: 10.1186/s12951-016-0225-6.
  11. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008; 74(7):2171-8. doi: 10.1128/AEM.02001-07.
  12. Zeynali-Aghdam S, Minaeian S, Sadeghpour Karimi M, Tabatabaee Bafroee A. The antibacterial effects of the mixture of silver nanoparticles with the shallot and nettle alcoholic extracts. Journal of Applied Biotechnology Reports. 2019; 6(4):158-164. doi:10.29252/JABR.06.04.05.
  13. Ahmad A, Khan A, Samber N, Manzoor N. Antimicrobial activity of mentha piperita essential oil in combination with silver ions. Synergy. 2014; 1(2):92-98. doi: 10.1016/j.synres.2014.11.001.
  14. Krychowiak M, Grinholc M, Banasiuk R, Krauze-Baranowska M, Głod D, Kawiak A, et al. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLoS One. 2014; 9(12):e115727. doi: 10.1371/journal.pone.0115727.
  15. de Rapper S, Viljoen A, van Vuuren S. The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents. Evid Based Complement Alternat Med. 2016; 2016:2752739. doi: 10.1155/2016/2752739.
  16. Moghadami F, Dolatabadi S, Nazem H. Antimicrobial activity of alcohol and aqueous extract of lavandula angustifolia leaves and flowers on Staphylococcus pyogenes and Staphylococcus aureus. J Zanjan Medical Uni. 2012; 20(82):56-63. [In Persian].
  17. Yap PS, Lim SH, Hu CP, Yiap BC. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine. 2013; 20(8-9):710-3. doi: 10.1016/j.phymed.2013.02.013.
  18. Montgomery DC. Design and analysis of experiments. Fifth edition. New York: John Wiley & Sons; 2001. P. 421.
  19. Ghashghaei T, Soudi MR, Hosseinkhani S. Optimization of xanthan gum production from grape juice concentrate using plackett-burman design and response surface methodology. Appl Food Biotechnol. 2016; 3(1):15-23. doi: 10.22037/afb.v3i1.9984.
  20. Moghadami F, Hosseini R, Fooladi J, Kalantari M. Optimization of coenzyme q10 production by gluconobacter japonicus FM10 using response surface methodology. Journal of Applied Biotechnology Reports. 2021; 8(2):172-179. doi: 10.30491/jabr.2021. 130940.
  21. Minitab 18 Statistical Software. Computer software. State College, PA: Minitab, Inc.; 2017. www.minitab.com.
  22. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16(10):2346-53. doi: 10.1088/0957-4484/16/10/059.
  23. Heli H, Tondro G, Sattarahmady N, Dehdari Vais R, Veisi Kahreh H. VeisiKahreh, H. Nanoparticles of copper and copper oxides: Synthesis and determination of antibacterial activity. Journal of Kerman University of Medical Sciences. 2017; 24(2):166-170.
  24. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004; 275(1):177-82. doi: 10.1016/j. jcis.2004.02.012.
  25. Masoumipour F, Hassanshahian M, Jafarinasab Antimicrobial activity of combined extracts of trachyspermum, thymus and pistachio against some pathogenic bacteria. Journal of Kerman University of MedicalSciences. 2018; 25(2):153-163.
  26. Smekalova M, Aragon V, Panacek A, Prucek R, Zboril R, Kvitek L. Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Vet J. 2016; 209:174-9. doi: 10.1016/j.tvjl.2015.10.032.
  27. Huang L, Dai T, Xuan Y, Tegos GP, Hamblin MR. Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: Efficacy against bacterial burn infections. Antimicrob Agents Chemother. 2011; 55(7):3432-8. doi: 10.1128/AAC. 01803-10.
  28. Jafari B, Monadi A. Comparative study on the effects of silver nanoparticles and methanolic extracts of Calendula officinalis on pathogenic bacteria Staphylococcus aureus, Bacilluscereus, Escherichia coli and Pseudomonas aeruginosa under laboratory conditions. Journal of Sabzevar University of Medical Sciences. 2020; 27(2):163-171.
  29. Mahfuzul Hoque MD, Bari ML, Inatsu Y, Juneja VK, Kawamoto S. Antibacterial activity of guava (Psidium guajava L.) and Neem (Azadirachta indica A. Juss.) extracts against foodborne pathogens and spoilage bacteria. Foodborne Pathog Dis. 2007; 4(4):481-8. doi: 10.1089/fpd.2007.0040.
  30. Adeshina G, Okeke C, Onwuegbuchulam N, Ehinmidu J. Preliminary studies on antimicrobial activities of ethanolic extracts of Ficus sycomorus and Ficus platyphylla Del. Int J Biol Chem Sci. 2009; 3(5):147-151. doi: 10.4314/ijbcs. v3i5.51080.
  31. Ammer MR, Zaman S, Khalid M, Bilal M, Erum S. Optimization of antibacterial activity of Eucalyptus tereticornis leaf extracts against Escherichia coli through response surface methodology. J Radiat Res Appl Sci. 2016; 9(4):376-385. doi: 10.1016/j.jrras.2016.05.001.