Document Type : Original Article

Authors

1 Clinical Department, Shahrekord University, Shahrekord, Iran

2 Department of Pathology, Medical Faculty, AJA University of Medical Sciences, Tehran, Iran

3 Department of Applied Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran

Abstract

Background: Surgical sutures are sterile filaments to support the healing process. Also Suture as a major part of surgical site management can challenge surgical wound healing. The objective of the current study was to prevent surgical site infection by creating a new antibacterial silk-nano cefixime suture.
Methods: The silk suture became silk-nano cefixime suture by immersing in the 1, 2, and 3 wt % cefixime solutions. The antibacterial activity of silk-nano cefixime suture was tested on E. coli (ATCC25922). The healing effect of silk-nano cefixime suture was evaluated by H&E staining sections and compared between the control and treated groups on days 3, 8 and 14. The obtained quantitative data were presented as mean ± standard deviation. In order to compare the mean of quantitative variables between the studied groups, general linear model of statistical analysis test and 3-D SPSS charts were used (P ≤ 0.05).
Results: The inhibition zone diameter of E. coli (ATCC25922) was 25 mm and no statistically significant difference was found between the healing properties (P≥.05). There was a significant difference in the mean of Polymorphonuclear leukocytes (PMN) and macrophage infiltration between the control and treated groups on day 8 (p≤ 0.05).
Conclusion: Our data indicate that silk-nano cefixime suture has the potential to reduce the risk of surgical site infections. Finally, it is strongly recommended to introduce silk-nano cefixime suture as a reliable substitute for current surgical sutures.

Keywords

  1. Assadian O, Below H, Kramer A. The effect of triclosan-coated sutures in wound healing and triclosan degradation in the environment. J Plast Reconstr Aesthet Surg. 2009; 62(2):264-5. doi: 10.1016/j.bjps.2008.08.014.
  2. Scales BS, Huffnagle GB. The microbiome in wound repair and tissue fibrosis. J Pathol. 2013; 229(2):323-31. doi: 10.1002/path.4118.
  3. Kathju S, Nistico L, Hall-Stoodley L, Post JC, Ehrlich GD, Stoodley P. Chronic surgical site infection due to suture-associated polymicrobial biofilm. Surg Infect (Larchmt). 2009; 10(5):457-61. doi: 10.1089/sur.2008.062.
  4. Mingmalairak C. Antimicrobial sutures: New strategy in surgical site infections. In: Mendez-Vilas A (ed). Science against microbial pathogens: communicating current research and technological advances. Spain: FORMATEX Research Center. 2011; P. 313-23.
  5. Ming X, Rothenburger S, Nichols MM. In vivo and in vitro antibacterial efficacy of PDS plus (polidioxanone with triclosan) suture. Surg Infect (Larchmt). 2008; 9(4):451-7. doi: 10.1089/sur.2007.061.
  6. Gómez-Alonso A, García-Criado FJ, Parreno-Manchado FC, García-Sánchez JE, García-Sánchez E, Parreño-Manchado A, et al. Study of the efficacy of Coated VICRYL Plus Antibacterial suture (coated Polyglactin 910 suture with Triclosan) in two animal models of general surgery. J Infect. 2007; 54(1):82-8. doi: 10.1016/j.jinf.2006.01.008.
  7. Sharifi A, Kazemipoor A, Sharifi H. Phacotrabeculectomy and Implantation of Intraocular Lenses with Releasable Sutures and Antimetabolite Agents: Efficacy and Safety. Journal of Kerman University of Medical Sciences. 2017; 24(2): 118-124.
  8. Huang L, Taylor H, Gerber M, Orndorff PE, Horton JR, Tonelli A. Formation of antibiotic, biodegradable/bioabsorbable polymers by processing with neomycin sulfate and its inclusion compound with β‐cyclodextrin. Journal of Applied Polymer Science. 1999; 74(4):937-47. doi: 10.1002/(SICI)1097-4628(19991024)74:4<937::AID-APP20>3.0.CO;2-K.
  9. Swanson NA, Tromovitch TA. Suture materials, 1980s: properties, uses, and abuses. Int J Dermatol. 1982; 21(7):373-8. doi: 10.1111/j.1365-4362.1982.tb03154.x.
  10. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003; 24(3):401-16. doi: 10.1016/s0142-9612(02)00353-8.
  11. Justinger C, Moussavian MR, Schlueter C, Kopp B, Kollmar O, Schilling MK. Antibacterial [corrected] coating of abdominal closure sutures and wound infection. Surgery. 2009; 145(3):330-4. doi: 10.1016/j.surg.2008.11.007.
  12. Vigderman L, Zubarev ER. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev. 2013; 65(5):663-76. doi: 10.1016/j.addr.2012.05.004.
  13. O'Neal RB, Alleyn CD. Suture materials and techniques. Curr Opin Periodontol. 1997; 4:89-95. PMID: 9655027.
  14. Miro D, Julià MV, Sitges-Serra A. Wound breaking strength and healing after suturing noninjured tissues. J Am Coll Surg. 1995; 180(6):659-65. PMID: 7773478.
  15. Martin P. Wound healing--aiming for perfect skin regeneration. Science. 1997; 276(5309):75-81. doi: 10.1126/science.276.5309.75.
  16. Yaltirik M, Dedeoglu K, Bilgic B, Koray M, Ersev H, Issever H, et al. Comparison of four different suture materials in soft tissues of rats. Oral Dis. 2003; 9(6):284-6. doi: 10.1034/j.1601-0825.2003.00954.x.
  17. Elayarajah, Rajendran R, Venkatrajah, Sreekumar S, Sudhakar A, Janiga, et al. Biodegradable tocopherol acetate as a drug carrier to prevent ureteral stent-associated infection. Pak J Biol Sci. 2011; 14(5):336-43. doi: 10.3923/pjbs.2011.336.343.
  18. Gál P, Vidinský B, Toporcer T, Mokrý M, Mozes S, Longauer F, et al. Histological assessment of the effect of laser irradiation on skin wound healing in rats. Photomed Laser Surg. 2006; 24(4):480-8. doi: 10.1089/pho.2006.24.480.
  19. Edmiston CE, Seabrook GR, Goheen MP, Krepel CJ, Johnson CP, Lewis BD, et al. Bacterial adherence to surgical sutures: can antibacterial-coated sutures reduce the risk of microbial contamination? J Am Coll Surg. 2006; 203(4):481-9. doi: 10.1016/j.jamcollsurg.2006.06.026.
  20. Alexander JW, Kaplan JZ, Altemeier WA. Role of suture materials in the development of wound infection. Ann Surg. 1967; 165(2):192-9. doi: 10.1097/00000658-196702000-00005.
  21. Katz S, Izhar M, Mirelman D. Bacterial adherence to surgical sutures. A possible factor in suture induced infection. Ann Surg. 1981; 194(1):35-41. doi: 10.1097/00000658-198107000-00007.
  22. De Simone S, Gallo AL, Paladini F, Sannino A, Pollini M. Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. J Mater Sci Mater Med. 2014; 25(9):2205-14. doi: 10.1007/s10856-014-5262-9.
  23. Covaliu CI, Berger D, Matei C, Diamandescu L, Vasile E, Cristea C, et al. Magnetic nanoparticles coated with polysaccharide polymers for potential biomedical applications. J Nanopart Res. 2011; 13(11):6169-80. doi: 10.1007/s11051-011-0452-6.
  24. Watanabe A, Kohnoe S, Shimabukuro R, Yamanaka T, Iso Y, Baba H, et al . Risk factors associated with surgical site infection in upper and lower gastrointestinal surgery. Surg Today. 2008; 38(5):404-12. doi: 10.1007/s00595-007-3637-y.
  25. Reinbold J, Uhde AK, Müller I, Weindl T, Geis-Gerstorfer J, Schlensak C, et al. Preventing Surgical Site Infections Using a Natural, Biodegradable, Antibacterial Coating on Surgical Sutures. Molecules. 2017; 22(9):1570. doi: 10.3390/molecules22091570.
  26. Chen X, Zhang Q, Hou D, Lin J, Gao J, Wang L. Fabrication and characterization of novel antibacterial silk sutures with different braiding parameters. Journal of Natural Fibers. 2018; 16(6):866-76. doi: 10.1080/15440478.2018.1441087.
  27. Chen X, Hou D, Wang L, Zhang Q, Zou J, Sun G. Antibacterial Surgical Silk Sutures Using a High-Performance Slow-Release Carrier Coating System. ACS Appl Mater Interfaces. 2015; 7(40):22394-403. doi: 10.1021/acsami.5b06239.
  28. Höer J, Anurov M, Titkova S, Klinge U, Töns C, Ottinger A, et al. Influence of suture material and suture technique on collagen fibril diameters in midline laparotomies. Eur Surg Res. 2000; 32(6):359-67. doi: 10.1159/000052218.
  29. Okamoto T, Rosini KS, Miyahara GI, Gabrielli MF. Healing process of the gingival mucosa and dental alveolus following tooth extraction and suture with polyglycolic acid and polyglactin 910 threads. Comparative histomorphologic study in rats. Braz Dent J. 1994; 5(1):35-43. PMID: 7833640.
  30. Selvig KA, Biagiotti GR, Leknes KN, Wikesjö UM. Oral tissue reactions to suture materials. Int J Periodontics Restorative Dent. 1998; 18(5):474-87. PMID: 10093524 .
  31. Vastani A, Maria A. Healing of intraoral wounds closed using silk sutures and isoamyl 2-cyanoacrylate glue: a comparative clinical and histologic study. J Oral Maxillofac Surg. 2013; 71(2):241-8. doi: 10.1016/j.joms.2012.08.032.
  32. Rothenburger S, Spangler D, Bhende S, Burkley D. In vitro antimicrobial evaluation of Coated VICRYL* Plus Antibacterial Suture (coated polyglactin 910 with triclosan) using zone of inhibition assays. Surg Infect (Larchmt). 2002; 3(1):S79-87. doi: 10.1089/sur.2002.3.s1-79.
  33. Alirezaie Alavijeh, A., Dadpey, M., Barati, M., Molamirzaie, A. Silk suture reinforced with Cefixime nanoparticles using polymer hydrogel (CFX@PVA); Preparation, Bacterial resistance and Mechanical properties. Nanomedicine Research Journal. 2018; 3(3):133-9. doi: 10.22034/nmrj.2018.03.003.