Document Type : Original Article

Authors

1 Nephrology and kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran

2 Nephrology and kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran

3 Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran

Abstract

Background: This study examined the effect of prenatal and early postnatal ethanol exposure on the structural, functional, and molecular alterations of rat’s offspring kidney on postnatal days 21 and 90.
Methods: Pregnant rats on gestation day 7 were divided into the two groups, namely control and ethanol groups. Rats in the ethanol group received ethanol (4.5 g/kg B.W) from gestation day 7 throughout lactation. Nephrin, podocin, vascular endothelial growth factor receptors (VEGFRs) 1 and 2 gene expression were measured by RT-PCR technique. The MMP2 and MMP9 levels in the kidney tissue and plasma cystatin C level were measured by ELISA method.
Results: The results revealed a significant alteration in mRNA expression of nephrin, podocin, and VEGFR, as well as MMPs amounts in the kidneys of the offspring. Cystatin C level, the ratio of cystatin C/serum creatinine, serum creatinine, and urine urea showed a significant increase, but urine creatinine and GFR showed a significant decrease in the offsprings of the ethanol group compared to the control group. Histopathological changes such as fibrosis, kidney cells proliferation, leukocytes infiltration, and vacuolization have also seen in the kidney of the offsprings after 21 and 90 days from birth.
Conclusion: Taken together, these results provide evidence that pre and early postnatal ethanol exposure renal toxicity is in part associated with alteration of nephrin, podocin, and VEGFRs genes expression, as well as MMPs amount changes. Furthermore, it was found that these molecular alterations were triggered by inflammatory reactions manifested by fibrosis, proliferation, and polymorphonuclear(PMN) leukocytes infiltration.

Keywords

Mukherjee RA, Hollins S, Turk J. Fetal alcohol spectrum
disorder: an overview. J R Soc Med. 2006;99(6):298-302. doi:
10.1258/jrsm.99.6.298.
2. Shirpoor A, Salami S, Khadem-Ansari MH, Minassian S,
Yegiazarian M. Protective effect of vitamin E against ethanolinduced
hyperhomocysteinemia, DNA damage, and atrophy
in the developing male rat brain. Alcohol Clin Exp Res.
2009;33(7):1181-6. doi: 10.1111/j.1530-0277.2009.00941.x.
3. Gray SP, Kenna K, Bertram JF, Hoy WE, Yan EB, Bocking
AD, et al. Repeated ethanol exposure during late gestation
decreases nephron endowment in fetal sheep. Am J Physiol
Regul Integr Comp Physiol. 2008;295(2):R568-74. doi:
10.1152/ajpregu.90316.2008.
4. Zhu Y, Zuo N, Li B, Xiong Y, Chen H, He H, et al. The
expressional disorder of the renal RAS mediates nephrotic
syndrome of male rat offspring induced by prenatal ethanol
exposure. Toxicology. 2018;400-401:9-19. doi: 10.1016/j.
tox.2018.03.004 .
5. Taylor CL, Jones KL, Jones MC, Kaplan GW. Incidence of
renal anomalies in children prenatally exposed to ethanol.
Pediatrics. 1994;94(2 Pt 1):209-12.
6. Gray SP, Cullen-McEwen LA, Bertram JF, Moritz KM.
Mechanism of alcohol-induced impairment in renal
development: could it be reduced by retinoic acid? Clin Exp
Pharmacol Physiol. 2012;39(9):807-13. doi: 10.1111/j.1440-
1681.2011.05597.x.
7. He H, Xiong Y, Li B, Zhu Y, Chen H, Ao Y, et al. Intrauterine
programming of the glucocorticoid-insulin-like growth factor
1 (GC-IGF1) axis mediates glomerulosclerosis in female adult
offspring rats induced by prenatal ethanol exposure. Toxicol
Lett. 2019;311:17-26. doi: 10.1016/j.toxlet.2019.04.022.
8. Assadi FK, Zajac CS. Ultrastructural changes in the rat kidney
following fetal exposure to ethanol. Alcohol. 1992;9(6):509-
12. doi: 10.1016/0741-8329(92)90088-r.
9. Shirpoor A, Norouzi L, Khadem-Ansari MH, Ilkhanizadeh
B, Karimipour M. The protective effect of vitamin E on
morphological and biochemical alteration induced by pre
and postnatal ethanol administration in the testis of male rat
offspring: a three months follow-up study. J Reprod Infertil.
2014;15(3):134-41.
10. Shirpoor A, Nemati S, Khadem-Ansari MH, Ilkhanizadeh B.
The protective effect of vitamin E against prenatal and early
postnatal ethanol treatment-induced heart abnormality in
rats: a 3-month follow-up study. Int Immunopharmacol.
2015;26(1):72-9. doi: 10.1016/j.intimp.2015.03.008.
11. Brocardo PS, Gil-Mohapel J, Christie BR. The role of
oxidative stress in fetal alcohol spectrum disorders.
Brain Res Rev. 2011;67(1-2):209-25. doi: 10.1016/j.
brainresrev.2011.02.001.
12. Tofighi A, Ahmadi S, Seyyedi SM, Shirpoor A, Kheradmand
F, Gharalari FH. Nandrolone administration with or without
strenuous exercise promotes overexpression of nephrin
and podocin genes and induces structural and functional
alterations in the kidneys of rats. Toxicol Lett. 2018;282:147-
53. doi: 10.1016/j.toxlet.2017.10.015.
13. Bancroft JD, Stevens A. Theory and Practice of Histological
Techniques. Edinburgh: Churchill Livingstone; 1990.
14. Ashcroft T, Simpson JM, Timbrell V. Simple method of
estimating severity of pulmonary fibrosis on a numerical scale.
J Clin Pathol. 1988;41(4):467-70. doi: 10.1136/jcp.41.4.467.
15. Shirpoor A, Rezaei F, Abdollahzade Fard A, Taghizadeh
Afshari A, Hosseini Gharalari F, Rasmi Y. Ginger extract
protects rat’s kidneys against oxidative damage after chronic
ethanol administration. Biomed Pharmacother. 2016;84:698-
704. doi: 10.1016/j.biopha.2016.09.097.
16. Young JK, Giesbrecht HE, Eskin MN, Aliani M, Suh M.
Nutrition implications for fetal alcohol spectrum disorder.
Adv Nutr. 2014;5(6):675-92. doi: 10.3945/an.113.004846.
17. Lieber CS. Relationships between nutrition, alcohol use, and
liver disease. Alcohol Res Health. 2003;27(3):220-31.
18. Sebastiani G, Borrás-Novell C, Casanova MA, Pascual
Tutusaus M, Ferrero Martínez S, Gómez Roig MD, et al. The
effects of alcohol and drugs of abuse on maternal nutritional
profile during pregnancy. Nutrients. 2018;10(8):1008. doi:
10.3390/nu10081008.
19. Kerjaschki D. Caught flat-footed: podocyte damage and the
molecular bases of focal glomerulosclerosis. J Clin Invest.
2001;108(11):1583-7. doi: 10.1172/jci14629.
20. Antignac C. Genetic models: clues for understanding the
pathogenesis of idiopathic nephrotic syndrome. J Clin Invest.
2002;109(4):447-9. doi: 10.1172/jci15094.
21. Zuo Y, Wang C, Sun X, Hu C, Liu J, Hong X, et al. Identification
of matrix metalloproteinase-10 as a key mediator of podocyte
injury and proteinuria. Kidney Int. 2021;100(4):837-49. doi:
Journal of Kerman University of Medical Sciences. Volume 29, Number 5, 2022 461
Ethanol, gestation and kidney dysfunction
10.1016/j.kint.2021.05.035.
22. Benzing T. Signaling at the slit diaphragm. J Am Soc
Nephrol. 2004;15(6):1382-91. doi: 10.1097/01.
asn.0000130167.30769.55.
23. Greka A, Mundel P. Cell biology and pathology of podocytes.
Annu Rev Physiol. 2012;74:299-323. doi: 10.1146/annurevphysiol-
020911-153238.
24. Schaefer L, Ren S, Schaefer RM, Mihalik D, Babelova
A, Huwiler A, et al. Nephrin expression is increased in
anti-Thy1.1-induced glomerulonephritis in rats. Biochem
Biophys Res Commun. 2004;324(1):247-54. doi: 10.1016/j.
bbrc.2004.09.042.
25. Huber TB, Kottgen M, Schilling B, Walz G, Benzing T.
Interaction with podocin facilitates nephrin signaling.
J Biol Chem. 2001;276(45):41543-6. doi: 10.1074/jbc.
C100452200.
26. Chen S, Chen H, Liu Q, Ma Q. Effect of simvastatin on the
expression of nephrin, podocin, and vascular endothelial
growth factor (VEGF) in podocytes of diabetic rat. Int J Clin
Exp Med. 2015;8(10):18225-34.
27. Putaala H, Soininen R, Kilpeläinen P, Wartiovaara J,
Tryggvason K. The murine nephrin gene is specifically
expressed in kidney, brain and pancreas: inactivation of the
gene leads to massive proteinuria and neonatal death. Hum
Mol Genet. 2001;10(1):1-8. doi: 10.1093/hmg/10.1.1.
28. Gerke P, Huber TB, Sellin L, Benzing T, Walz G.
Homodimerization and heterodimerization of the
glomerular podocyte proteins nephrin and NEPH1. J
Am Soc Nephrol. 2003;14(4):918-26. doi: 10.1097/01.
asn.0000057853.05686.89.
29. Donoviel DB, Freed DD, Vogel H, Potter DG, Hawkins E,
Barrish JP, et al. Proteinuria and perinatal lethality in mice
lacking NEPH1, a novel protein with homology to NEPHRIN.
Mol Cell Biol. 2001;21(14):4829-36. doi: 10.1128/
mcb.21.14.4829-4836.2001.
30. Huwiler A, Ren S, Holthöfer H, Pavenstädt H, Pfeilschifter
J. Inflammatory cytokines upregulate nephrin expression in
human embryonic kidney epithelial cells and podocytes.
Biochem Biophys Res Commun. 2003;305(1):136-42. doi:
10.1016/s0006-291x(03)00687-9.
31. Ren S, Xin C, Beck KF, Saleem MA, Mathieson P, Pavenstädt
H, et al. PPARalpha activation upregulates nephrin expression
in human embryonic kidney epithelial cells and podocytes
by a dual mechanism. Biochem Biophys Res Commun.
2005;338(4):1818-24. doi: 10.1016/j.bbrc.2005.10.158.
32. Beall MH, Amidi F, Gayle DA, Wang S, Beloosesky R, Ross
MG. Placental and fetal membrane nephrin and Neph1 gene
expression: response to inflammation. J Soc Gynecol Investig.
2005;12(5):298-302. doi: 10.1016/j.jsgi.2005.02.009.
33. Shirpoor A, Norouzi L, Khadem-Ansari MH, Ilkhanizadeh B,
Gharaaghaji R. Vasoprotective effect of vitamin E: rescue of
ethanol-induced atherosclerosis and inflammatory stress in
rat vascular wall. Int Immunopharmacol. 2013;16(4):498-
504. doi: 10.1016/j.intimp.2013.04.024.
34. Zhang Z, Neiva KG, Lingen MW, Ellis LM, Nör JE. VEGFdependent
tumor angiogenesis requires inverse and
reciprocal regulation of VEGFR1 and VEGFR2. Cell Death
Differ. 2010;17(3):499-512. doi: 10.1038/cdd.2009.152.
35. Huang Y, Chen X, Dikov MM, Novitskiy SV, Mosse CA, Yang
L, et al. Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant
hematopoiesis associated with elevated levels of VEGF. Blood.
2007;110(2):624-31. doi: 10.1182/blood-2007-01-065714.
36. Sugimoto H, Hamano Y, Charytan D, Cosgrove D, Kieran
M, Sudhakar A, et al. Neutralization of circulating vascular
endothelial growth factor (VEGF) by anti-VEGF antibodies
and soluble VEGF receptor 1 (sFlt-1) induces proteinuria.
J Biol Chem. 2003;278(15):12605-8. doi: 10.1074/jbc.
C300012200.
37. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et
al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1)
may contribute to endothelial dysfunction, hypertension, and
proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649-
58. doi: 10.1172/jci17189.
38. Fowden AL, Giussani DA, Forhead AJ. Intrauterine
programming of physiological systems: causes and
consequences. Physiology (Bethesda). 2006;21:29-37. doi:
10.1152/physiol.00050.2005.
39. Lenz O, Elliot SJ, Stetler-Stevenson WG. Matrix
metalloproteinases in renal development and disease. J Am
Soc Nephrol. 2000;11(3):574-81. doi: 10.1681/asn.v113574.
40. Brenner CA, Adler RR, Rappolee DA, Pedersen RA, Werb Z.
Genes for extracellular-matrix-degrading metalloproteinases
and their inhibitor, TIMP, are expressed during early
mammalian development. Genes Dev. 1989;3(6):848-59.
doi: 10.1101/gad.3.6.848.
41. Lelongt B, Legallicier B, Piedagnel R, Ronco PM. Do matrix
metalloproteinases MMP-2 and MMP-9 (gelatinases) play
a role in renal development, physiology and glomerular
diseases? Curr Opin Nephrol Hypertens. 2001;10(1):7-12.
doi: 10.1097/00041552-200101000-00002.
42. Assadi FK, Manaligod JR, Fleischmann LE, Zajac CS. Effects
of prenatal ethanol exposure on postnatal renal function
and structure in the rat. Alcohol. 1991;8(4):259-63. doi:
10.1016/0741-8329(91)90321-m.
43. Gray SP, Denton KM, Cullen-McEwen L, Bertram JF, Moritz
KM. Prenatal exposure to alcohol reduces nephron number
and raises blood pressure in progeny. J Am Soc Nephrol.
2010;21(11):1891-902. doi: 10.1681/asn.2010040368.
44. Stevens LA, Schmid CH, Greene T, Li L, Beck GJ, Joffe MM,
et al. Factors other than glomerular filtration rate affect
serum cystatin C levels. Kidney Int. 2009;75(6):652-60. doi:
10.1038/ki.2008.638.
45. Bardallo Cruzado L, Pérez González E, Martínez Martos
Z, Bermudo Guitarte C, Granero Asencio M, Luna Lagares
S, et al. Serum cystatin C levels in preterm newborns in
our setting: correlation with serum creatinine and preterm
pathologies. Nefrologia. 2015;35(3):296-303. doi: 10.1016/j.
nefro.2015.05.004.
46. Tangri N, Stevens LA, Schmid CH, Zhang YL, Beck GJ, Greene
T, et al. Changes in dietary protein intake has no effect on
serum cystatin C levels independent of the glomerular
filtration rate. Kidney Int. 2011;79(4):471-7. doi: 10.1038/
ki.2010.431.
47. Grubb A, Lindström V, Jonsson M, Bäck SE, Åhlund T, Rippe
B, et al. Reduction in glomerular pore size is not restricted to
pregnant women. Evidence for a new syndrome: ‘shrunken
pore syndrome’. Scand J Clin Lab Invest. 2015;75(4):333-40.
doi: 10.3109/00365513.2015.1025427.
48. Sasaki T, Hori H, Arai K, Hattori S, Nagai Y. Effects of a factor
derived from polymorphonuclear leukocytes on the growth
and collagen metabolism in normal and scleroderma skin
fibroblast cultures. J Dermatol Sci. 1996;11(1):10-8. doi:
10.1016/0923-1811(95)00410-6.