Document Type : Original Article
Authors
1 Department of Genetics, College of Biological Sciences, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
2 Department of Biochemistry and Biophysics, College of Biological Sciences, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
Abstract
Background: It is expected that the expression of key enzymes of the glycolysis pathway, specially PFK-1, increases tumor cells and so enhances the function of this pathway. The p53 and HIF-1 proteins are regulators of the expression of PFK-1 and LDH enzymes. This study was performed to investigate changes in the expression of PFK-1, LDH-A, p53, and HIF-1α genes to identify metabolic changes in non-small cell lung carcinoma (NSCLC) samples.
Methods: A number of 30 tumors and their adjacent normal tissue samples from surgically approved NSCLC patients were used. Total RNA from each tissue was extracted. The changes in mRNA levels of PFK-1M, LDHA, p53, and hypoxia-inducible factor-1 (HIF-1α) genes were evaluated in tumor and normal tissues of all patients using the real-time polymerase chain reaction (PCR) method. Finally, statistical analysis was used to determine significant differences and the relationship between changes in mRNA levels.
Results: According to the results, there was no significant difference in the mRNA levels of these genes between tumor and normal tissues. A significant difference in the mRNA level of lactate dehydrogenase A (LDHA) between adenocarcinoma (AdC) and squamous cell carcinoma (SqCC) tumor types was observed (P=0.014). Also, the difference between the mRNA level of LDHA and HIF-1α in metastatic and non-metastatic samples was significant (P=0.035 and P=0.046 respectively). Age and male gender were directly associated with an increased risk of NSCLC.
Conclusion: The results of the present study revealed that the increase in mRNA level of PFK-1 and p53 may be involved in NSCLC initiation, and an increase in LDH-A and HIF-1a is associated with a metastatic phenotype.
Keywords
- Shrivastava JP, Shrivastava A. Lung cancer: the global killer. Journal of Lung, Pulmonary & Respiratory Research. 2018;5(2):49. doi: 10.15406/jlprr.2018.05.00161.
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492.
- Abbas AK, Aster JC, Kumar V. Robbins Basic Pathology. 9th ed. Elsevier Saunders; 2013.
- Hoffman PC, Mauer AM, Vokes EE. Lung cancer. Lancet. 2000;355(9202):479-85. doi: 10.1016/s0140- 6736(00)82038-3.
- Devarakonda S, Morgensztern D, Govindan R. Genomic alterations in lung adenocarcinoma. Lancet Oncol. 2015;16(7):e342-51. doi: 10.1016/s1470-2045(15)00077-7.
- Shackelford RE, Vora M, Mayhall K, Cotelingam J. ALKrearrangements and testing methods in non-small cell lung cancer: a review. Genes Cancer. 2014;5(1-2):1-14. doi: 10.18632/genesandcancer.3.
- Bilello KS, Murin S, Matthay RA. Epidemiology, etiology, and prevention of lung cancer. Clin Chest Med. 2002;23(1):1-25. doi: 10.1016/s0272-5231(03)00057-1.
- Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367-80. doi: 10.1056/NEJMra0802714.
- Herst PM, Grasso C, Berridge MV. Metabolic reprogramming of mitochondrial respiration in metastatic cancer. Cancer Metastasis Rev. 2018;37(4):643-53. doi: 10.1007/s10555- 018-9769-2.
- Sun H, Zhou Y, Skaro MF, Wu Y, Qu Z, Mao F, et al. Metabolic reprogramming in cancer is induced to increase proton production. Cancer Res. 2020;80(5):1143-55. doi: 10.1158/0008-5472.can-19-3392.
- Giannattasio S, Mirisola MG, Mazzoni C. Cell stress, metabolic reprogramming, and cancer. Front Oncol. 2018;8:236. doi: 10.3389/fonc.2018.00236.
- Ramanathan A, Wang C, Schreiber SL. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci U S A. 2005;102(17):5992- 7. doi: 10.1073/pnas.0502267102.
- Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 2015;34:111. doi: 10.1186/s13046-015-0221-y.
- Sciacovelli M, Gaude E, Hilvo M, Frezza C. The metabolic alterations of cancer cells. In: Galluzzi L, Kroemer G, eds. Methods in Enzymology. Vol 542. Academic Press; 2014. p. 1-23. doi: 10.1016/b978-0-12-416618-9.00001-7.
- Yeung C, Gibson AE, Issaq SH, Oshima N, Baumgart JT, Edessa LD, et al. Targeting glycolysis through inhibition of lactate dehydrogenase impairs tumor growth in preclinical models of Ewing sarcoma. Cancer Res. 2019;79(19):5060-73. doi: 10.1158/0008-5472.can-19-0217.
- Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim Biophys Acta. 2011;1807(6):552-61. doi: 10.1016/j. bbabio.2010.10.012.
- Furuta E, Okuda H, Kobayashi A, Watabe K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta. 2010;1805(2):141-52. doi: 10.1016/j.bbcan.2010.01.005.
- Cerychova R, Pavlinkova G. HIF-1, metabolism, and diabetes in the embryonic and adult heart. Front Endocrinol (Lausanne). 2018;9:460. doi: 10.3389/fendo.2018.00460.
- Jiang B. Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis. 2017;4(1):25- 7. doi: 10.1016/j.gendis.2017.02.003.
- Rio DC, Ares M Jr, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010;2010(6):pdb.prot5439. doi: 10.1101/pdb.prot5439.
- Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab (Lond). 2010;7:7. doi: 10.1186/1743-7075-7-7.
- Zancan P, Sola-Penna M, Furtado CM, Da Silva D. Differential expression of phosphofructokinase-1 isoforms correlates with the glycolytic efficiency of breast cancer cells. Mol Genet Metab. 2010;100(4):372-8. doi: 10.1016/j. ymgme.2010.04.006.
- Vora S, Halper JP, Knowles DM. Alterations in the activity and isozymic profile of human phosphofructokinase during malignant transformation in vivo and in vitro: transformationand progression-linked discriminants of malignancy. Cancer Res. 1985;45(7):2993-3001.
- Dunaway GA. A review of animal phosphofructokinase isozymes with an emphasis on their physiological role. Mol Cell Biochem. 1983;52(1):75-91. doi: 10.1007/bf00230589.
- El-Bacha T, de Freitas MS, Sola-Penna M. Cellular distribution of phosphofructokinase activity and implications to metabolic regulation in human breast cancer. Mol Genet Metab. 2003;79(4):294-299. doi:10.1016/s1096-7192(03)00117-3.
- Yuan Y, Guo-Qing P, Yan T, Hong-Lin Y, Gong-Hua H, CaiGao Z. A study of PKM2, PFK-1, and ANT1 expressions in cervical biopsy tissues in China. Med Oncol. 2012;29(4):2904- 10. doi: 10.1007/s12032-011-0154-z.
- Li W, Xu Z, Hong J, Xu Y. Expression patterns of three regulation enzymes in glycolysis in esophageal squamous cell carcinoma: association with survival. Med Oncol. 2014;31(9):118. doi: 10.1007/s12032-014-0118-1.
- Wang G, Xu Z, Wang C, Yao F, Li J, Chen C, et al. Differential phosphofructokinase-1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues. Oncol Lett. 2013;6(6):1701-6. doi: 10.3892/ ol.2013.1599.
- He G, Jiang Z, Xue S, Sun X, Wang W. Expression of LDH and CEA in serum in the process of targeted therapy of lung adenocarcinoma and the association between them and prognosis. Oncol Lett. 2019;17(5):4550-6. doi: 10.3892/ ol.2019.10115.
- Xu Y, Wang L, Zheng X, Liu G, Wang Y, Lai X, et al. Positive expression of p53, c-erbB2 and MRP proteins is correlated with survival rates of NSCLC patients. Mol Clin Oncol. 2013;1(3):487-92. doi: 10.3892/mco.2013.72.
- Liu P, Wang M, Li L, Jin T. Correlation between osteosarcoma and the expression of WWOX and p53. Oncol Lett. 2017;14(4):4779-83. doi: 10.3892/ol.2017.6747.
- Shen L, Sun X, Fu Z, Yang G, Li J, Yao L. The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin Cancer Res. 2012;18(6):1561-7. doi: 10.1158/1078-0432.ccr-11-3040.
- Giatromanolaki A, Koukourakis MI, Sivridis E, et al. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer. 2001;85(6):881-890. doi:10.1054/bjoc.2001.2018.
- Rodríguez-Enríquez S, Marín-Hernández Á, Gallardo-Pérez JC, Pacheco-Velázquez SC, Belmont-Díaz JA, RobledoCadena DX, et al. Transcriptional regulation of energy metabolism in cancer cells. Cells. 2019;8(10):1225. doi: 10.3390/cells8101225.
- Yu L, Chen X, Sun X, Wang L, Chen S. The glycolytic switch in tumors: how many players are involved? J Cancer. 2017;8(17):3430-40. doi: 10.7150/jca.21125.