Document Type : Original Article

Authors

1 Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3 Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

4 Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

5 Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Abstract

Background: Blended electrospun nanofibrous mats containing black pomegranate peel extract (BPPE) were prepared using different proportions of polyvinylpyrrolidone (PVP) and polycaprolactone as the filament-forming polymers.
Methods: The electrospinning process was conducted by simultaneously injecting PVP and polycaprolactone spinning solutions from two opposite sides on a rotary collector. The films were characterized in morphology, mechanical features, water vapor transmission rate, swelling properties, and drug release profile.
Results: The uniform white porous nanofibrous mats were achieved using the optimized method. As the concentration of PVP in the formula increased, the average diameter of the fibers increased, and fibers containing spindle bodies appeared. Though, the moisture content is one of the most essential issues with a wound dressing to promote the healing process, excessive water absorption by PVP produced highly erodible mats with weak tensile strength and elongation. The higher content of polycaprolactone created narrower and more uniform fibers and improved the mechanical features and water swelling properties of the blended mats. Furthermore, the nanofibrous membrane composed of a 70:30 polycaprolactone/PVP weight ratio resulted in a more sustained drug release. Conclusion: The favorable properties mentioned above, along with the wound healing effect of BPPE, make it an attractive candidate for application in wound dressing products.

Keywords

  1. Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu DT, et al. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered. 2020;11(1):328-55. doi: 10.1080/21655979.2020.1736240.
  2. Keshvardoostchokami M, Seidelin Majidi S, Huo P, Ramachandran R, Chen M, Liu B. Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering. Nanomaterials (Basel). 2020;11(1):21. doi: 10.3390/nano11010021.
  3. Bavarsad N, Kouchak M, Varmaziar M, Sadeghi-Nejad B. Preparation, characterization and evaluation of antifungal efficacy of chitosan/soy phosphatidylcholine topical films containing griseofulvin. Jundishapur J Nat Pharm Prod. 2015;10(2):e27562. doi: 10.17795/jjnpp-27562.
  4. Kamoun EA, Kenawy ES, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVAbased hydrogel dressings. J Adv Res. 2017;8(3):217-33. doi: 10.1016/j.jare.2017.01.005.
  5. Ignatova M, Manolova N, Rashkov I. Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning. Eur Polym J. 2007;43(4):1112- 22. doi: 10.1016/j.eurpolymj.2007.01.012.
  6. Oliver-Urrutia C, Rosales Ibañez R, Flores-Merino MV, Vojtova L, Salplachta J, Čelko L, et al. Lyophilized polyvinylpyrrolidone hydrogel for culture of human oral mucosa stem cells. Materials (Basel). 2021;14(1):227. doi: 10.3390/ma14010227.
  7. Op’t Veld RC, Walboomers XF, Jansen JA, Wagener F. Design considerations for hydrogel wound dressings: strategic and molecular advances. Tissue Eng Part B Rev. 2020;26(3):230- 48. doi: 10.1089/ten.TEB.2019.0281.
  8. Abedalwafa M, Wang F, Wang L, Li C. Biodegradable polyepsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci. 2013;34(2):123-40.
  9. Slivac I, Zdraveva E, Ivančić F, Žunar B, Holjevac Grgurić T, Gaurina Srček V, et al. Bioactivity comparison of electrospun PCL mats and liver extracellular matrix as scaffolds for HepG2 cells. Polymers (Basel). 2021;13(2):279. doi: 10.3390/ polym13020279.
  10. Jia YT, Wu C, Dong FC, Huang G, Zeng XH. Preparation of PCL/PVP/Ag nanofiber membranes by electrospinning method. Appl Mech Mater. 2013;268-270:580-3. doi: 10.4028/www.scientific.net/AMM.268-270.580.
  11. Ghasemi Soloklui AA, Ershadi A, Fallahi E. Evaluation of cold hardiness in seven Iranian commercial pomegranate (Punica granatum L.) cultivars. HortScience. 2012;47(12):1821-5. doi: 10.21273/hortsci.47.12.1821.
  12. Ambigaipalan P, de Camargo AC, Shahidi F. Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. J Agric Food Chem. 2016;64(34):6584-604. doi: 10.1021/acs. jafc.6b02950.
  13. Sharma P, Yadav S. Effect of incorporation of pomegranate peel and bagasse powder and their extracts on quality characteristics of chicken meat patties. Food Sci Anim Resour. 2020;40(3):388-400. doi: 10.5851/kosfa.2020.e19.
  14. Ismail T, Sestili P, Akhtar S. Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and antiinfective effects. J Ethnopharmacol. 2012;143(2):397-405. doi: 10.1016/j.jep.2012.07.004.
  15. Elfalleh W, Hannachi H, Tlili N, Yahia Y, Nasri N, Ferchichi A. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J Med Plants Res. 2012;6(32):4724-30. doi: 10.5897/jmpr11.995.
  16. Chidambara Murthy KN, Reddy VK, Veigas JM, Murthy UD. Study on wound healing activity of Punica granatum peel. J Med Food. 2004;7(2):256-9. doi: 10.1089/1096620041224111.
  17. Sheikh Asadi M, Mirghazanfari SM, Dadpay M, Nassireslami E. Evaluation of wound healing activities of pomegranate (Punica granatum-Lythraceae) peel and pulp. J Res Med Dent Sci. 2018;6(3):230-6.
  18. Kushwaha SC, Bera MB, Kumar P. Nutritional composition of detanninated and fresh pomegranate peel powder. IOSR J Environ Sci Toxicol Food Technol. 2013;7(1):38-42.
  19. Omidi Ghaleh Mohammadi M, Mirghazanfari SM. Investigation of Iranian pomegranate cultivars for wound healing components. Eur J Transl Myol. 2019;29(1):7995. doi: 10.4081/ejtm.2019.7995.
  20. Shams Ardekani MR, Hajimahmoodi M, Oveisi MR, Sadeghi N, Jannat B, Ranjbar AM, et al. Comparative antioxidant activity and total flavonoid content of Persian pomegranate (Punica granatum L.) cultivars. Iran J Pharm Res. 2011;10(3):519-24.
  21. Abbaspour M, Sharif Makhmalzadeh B, Rezaee B, Shoja S, Ahangari Z. Evaluation of the antimicrobial effect of chitosan/ polyvinyl alcohol electrospun nanofibers containing mafenide acetate. Jundishapur J Microbiol. 2015;8(10):e24239. doi: 10.5812/jjm.24239.
  22. Illangakoon UE, Gill H, Shearman GC, Parhizkar M, Mahalingam S, Chatterton NP, et al. Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. Int J Pharm. 2014;477(1-2):369-79. doi: 10.1016/j. ijpharm.2014.10.036.
  23. Kouchak M, Handali S, Naseri Boroujeni B. Evaluation of the mechanical properties and drug permeability of chitosan/ Eudragit RL composite film. Osong Public Health Res Perspect. 2015;6(1):14-9. doi: 10.1016/j.phrp.2014.12.001.
  24. Xu R, Xia H, He W, Li Z, Zhao J, Liu B, et al. Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci Rep. 2016;6:24596. doi: 10.1038/srep24596.
  25. Ali SM, Yosipovitch G. Skin pH: from basic science to basic skin care. Acta Derm Venereol. 2013;93(3):261-7. doi: 10.2340/00015555-1531.
  26. Ding W, Wei S, Zhu J, Chen X, Rutman D, Guo Z. Manipulated electrospun PVA nanofibers with inexpensive salts. Macromol Mater Eng. 2010;295(10):958-65. doi: 10.1002/mame.201000188.
  27. Ifegwu OC, Anyakora C. The place of electrospinning in separation science and biomedical engineering. In: Tański T, Jarka P, Matysiak W, eds. Electrospinning Method Used to Create Functional Nanocomposites Films. London: IntechOpen; 2018. p. 17. doi: 10.5772/intechopen.77221.
  28. Samprasit W, Akkaramongkolporn P, Kaomongkolgit R, Opanasopit P. Cyclodextrin-based oral dissolving films formulation of taste-masked meloxicam. Pharm Dev Technol. 2018;23(5):530-9. doi: 10.1080/10837450.2017.1401636.
  29. Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3(3):321-30. doi: 10.1016/j. actbio.2007.01.002.
  30. Meng ZX, Zheng W, Li L, Zheng YF. Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning. Mater Sci Eng C. 2010;30(7):1014-21. doi: 10.1016/j.msec.2010.05.003.
  31. Nagiah N, Ramanathan G, Shobana L, Singaravelu S, Uma TS, Natarajan TS. Preparation and characterization of electrospun poly(3-hydroxybutyric acid)–poly(N-vinylpyrrolidone) and poly(caprolactone)–poly(N-vinylpyrrolidone) fibers as potential scaffolds for skin regeneration. J Biomater Tissue Eng. 2013;3(6):624-9. doi: 10.1166/jbt.2013.1130.
  32. Brahma S, Jagannatha Rao K, Shivashankar S. Rapid growth of nanotubes and nanorods of würtzite ZnO through microwaveirradiation of a metalorganic complex of zinc and a surfactant in solution. Bull Mater Sci. 2010;33(2):89-95. doi: 10.1007/ s12034-010-0027-7.
  33. Oh SH, Lee JH. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomed Mater. 2013;8(1):014101. doi: 10.1088/1748- 6041/8/1/014101.
  34. Zhu Y, Gao C, Liu X, Shen J. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules. 2002;3(6):1312-9. doi: 10.1021/bm020074y.
  35. Li X, Kong X, Shi S, Gu Y, Yang L, Guo G, et al. Biodegradable MPEG-g-chitosan and methoxy poly(ethylene glycol)-bpoly(ε-caprolactone) composite films: part 1. Preparation and characterization. Carbohydr Polym. 2010;79(2):429-36. doi: 10.1016/j.carbpol.2009.08.032.
  36. Arikibe JE, Lata R, Rohindra D. Bacterial cellulose/chitosan hydrogels synthesized in situ for biomedical application. J Appl Biosci. 2021;162(1):16675-93. doi: 10.35759/JABs.162.1.
  37. Ujang Z, Abdul Rashid AH, Suboh SK, Halim AS, Lim CK. Physical properties and biocompatibility of oligochitosan membrane film as wound dressing. J Appl Biomater Funct Mater. 2014;12(3):155-62. doi: 10.5301/jabfm.5000190.
  38. Dai XY, Nie W, Wang YC, Shen Y, Li Y, Gan SJ. Electrospun emodin polyvinylpyrrolidone blended nanofibrous membrane: a novel medicated biomaterial for drug delivery and accelerated wound healing. J Mater Sci Mater Med. 2012;23(11):2709-16. doi: 10.1007/s10856-012-4728-x.
  39. Cui W, Zhou Y, Chang J. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater. 2010;11(1):014108. doi: 10.1088/1468-6996/11/1/014108.
  40. Yu DG, White K, Yang JH, Wang X, Qian W, Li Y. PVP nanofibers prepared using co-axial lectrospinning with salt solution as sheath fluid. Mater Lett. 2012;67(1):78-80. doi: 10.1016/j.matlet.2011.09.035.