Document Type : Original Article

Authors

1 Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran 2Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

2 Endocrinology and Metabolism Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Background: Consumption of a high-fat diet (HFD) is associated with an increased incidence of inflammatory diseases and metabolic disorders. Also, these disorders will increase in women with aging and menopause, which is probably due to the reduced role of estradiol (E2). Selective estrogen modulators including tamoxifen (TAM), which acts through estrogen receptors, have important metabolic effects. This study aimed to determine whether TAM and E2 have protective effects on inflammation caused by HFD in young and aged mice.
Methods: Four-month-old (Sham and ovariectomized [OVX]) and 20-month-old female C57BL/6J mice were used in this study. After feeding them with HFD for 12 weeks, they were divided into nine groups consisting of Sham + Oil, Sham +TAM, Sham + E2, OVX + Oil, OVX +TAM, OVX + E2, Aged + Oil, Aged +TAM, and Aged + E2. TAM and E2 were injected subcutaneously every four days for four weeks. At the end of the experiments, the mice’s blood was sampled. The serum cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) were also determined using ELISA kits.
Results: The results revealed that HFD increased inflammation by reducing IL-10 and increasing TNF-a/IL-10 and IL-6/IL-10 ratio in young and aged mice, and TAM and E2 therapy resulted in a significant decrease in TNF-α and IL-6, and an increase in IL-10 in young and aged mice.
Conclusion: In conclusion, the results of this study indicated that TAM, in addition to being used as an anticancer drug, can reduce HFD-induced inflammation in both young and aged mice. Therefore, probably it is a good candidate to substitute E2. 

Highlights

Mohammad Khaksari(Google Scholar)(Pubmed)

Keywords

  1. Barness LA, Opitz JM, Gilbert-Barness E. Obesity: genetic, molecular, and environmental aspects. Am J Med Genet A. 2007;143A(24):3016-34. doi: 10.1002/ajmg.a.32035.
  2. Fresno M, Alvarez R, Cuesta N. Toll-like receptors, inflammation, metabolism and obesity. Arch Physiol Biochem. 2011;117(3):151-64. doi: 10.3109/13813455.2011.562514.
  3. Skaznik-Wikiel ME, Swindle DC, Allshouse AA, Polotsky AJ, McManaman JL. High-fat diet causes subfertility and compromised ovarian function independent of obesity in mice. Biol Reprod. 2016;94(5):108. doi: 10.1095/ biolreprod.115.137414.
  4. Litwak SA, Wilson JL, Chen W, Garcia-Rudaz C, Khaksari M, Cowley MA, et al. Estradiol prevents fat accumulation and overcomes leptin resistance in female high-fat diet mice. Endocrinology. 2014;155(11):4447-60. doi: 10.1210/ en.2014-1342.
  5. Farhadi Z, Khaksari M, Azizian H, Mortazaeizadeh A, Shabani M, Shahrokhi N. Beneficial effects of tamoxifen on leptin sensitivity in young mice fed a high fat diet: role of estrogen receptor α and cytokines. Life Sci. 2020;246:117384. doi: 10.1016/j.lfs.2020.117384.
  6. Wang M, Tsai BM, Reiger KM, Brown JW, Meldrum DR. 17-beta-Estradiol decreases p38 MAPK-mediated myocardial inflammation and dysfunction following acute ischemia. J Mol Cell Cardiol. 2006;40(2):205-12. doi: 10.1016/j. yjmcc.2005.06.019.
  7. Azizian H, Khaksari M, Asadi Karam G, Esmailidehaj M, Farhadi Z. Cardioprotective and anti-inflammatory effects of G-protein coupled receptor 30 (GPR30) on postmenopausal type 2 diabetic rats. Biomed Pharmacother. 2018;108:153- 64. doi: 10.1016/j.biopha.2018.09.028.
  8. Kuk JL, Saunders TJ, Davidson LE, Ross R. Age-related changes in total and regional fat distribution. Ageing Res Rev. 2009;8(4):339-48. doi: 10.1016/j.arr.2009.06.001.
  9. Farhadi Z, Khaksari M, Azizian H, Dabiri S. The brain neuropeptides and STAT3 mediate the inhibitory effect of 17-β Estradiol on central leptin resistance in young but not aged female high-fat diet mice. Metab Brain Dis. 2022;37(3):625- 37. doi: 10.1007/s11011-021-00884-4.
  10. Serrano F, Klann E. Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev. 2004;3(4):431-43. doi: 10.1016/j.arr.2004.05.002.
  11. Park SS, Seo YK. Excess accumulation of lipid impairs insulin sensitivity in skeletal muscle. Int J Mol Sci. 2020;21(6):1949. doi: 10.3390/ijms21061949.
  12. Brooks SJ, Benedict C, Burgos J, Kempton MJ, Kullberg J, Nordenskjöld R, et al. Late-life obesity is associated with smaller global and regional gray matter volumes: a voxelbased morphometric study. Int J Obes (Lond). 2013;37(2):230- 6. doi: 10.1038/ijo.2012.13.
  13. Carter S, Caron A, Richard D, Picard F. Role of leptin resistance in the development of obesity in older patients. Clin Interv Aging. 2013;8:829-44. doi: 10.2147/cia.s36367.
  14. Foster TC. Role of estrogen receptor alpha and beta expression and signaling on cognitive function during aging. Hippocampus. 2012;22(4):656-69. doi: 10.1002/hipo.20935.
  15. Shahbazian M, Jafarynezhad F, Yadeghari M, Farhadi Z, Lotfi Samani S, Esmailidehaj M, et al. The effects of G proteincoupled receptor 30 (GPR30) on cardiac glucose metabolism in diabetic ovariectomized female rats. J Basic Clin Physiol Pharmacol. 2022. doi: 10.1515/jbcpp-2021-0374.
  16. Liu J, Lin H, Huang Y, Liu Y, Wang B, Su F. Cognitive effects of long-term dydrogesterone treatment used alone or with estrogen on rat menopausal models of different ages. Neuroscience. 2015;290:103-14. doi: 10.1016/j. neuroscience.2015.01.042.
  17. Kuo JR, Wang CC, Huang SK, Wang SJ. Tamoxifen depresses glutamate release through inhibition of voltage-dependent Ca2+entry and protein kinase Cα in rat cerebral cortex nerve terminals. Neurochem Int. 2012;60(2):105-14. doi: 10.1016/j. neuint.2011.11.014.
  18. Ebrahimi MN, Khaksari M, Sepehri G, Asadi Karam G, Raji-Amirhasani A, Azizian H. The effects of alone and combination tamoxifen, raloxifene and estrogen on lipid profile and atherogenic index of ovariectomized type 2 diabetic rats. Life Sci. 2020;263:118573. doi: 10.1016/j. lfs.2020.118573.
  19. Heikkinen T, Puoliväli J, Tanila H. Effects of long-term ovariectomy and estrogen treatment on maze learning in aged mice. Exp Gerontol. 2004;39(9):1277-83. doi: 10.1016/j. exger.2004.05.005.
  20. Khaksari M, Hajializadeh Z, Shahrokhi N, Esmaeili-Mahani S. Changes in the gene expression of estrogen receptors involved in the protective effect of estrogen in rat’s trumatic brain injury. Brain Res. 2015;1618:1-8. doi: 10.1016/j. brainres.2015.05.017.
  21. Azizian H, Khaksari M, Asadikaram G, Esmailidehaj M, Shahrokhi N. Progesterone eliminates 17β-estradiol-mediated cardioprotection against diabetic cardiovascular dysfunction in ovariectomized rats. Biomed J. 2021;44(4):461-70. doi: 10.1016/j.bj.2020.03.002.
  22. Albayrak A, Uyanik MH, Odabasoglu F, Halici Z, Uyanik A, Bayir Y, et al. The effects of diabetes and/or polymicrobial sepsis on the status of antioxidant enzymes and pro-inflammatory cytokines on heart, liver, and lung of ovariectomized rats. J Surg Res. 2011;169(1):67-75. doi: 10.1016/j.jss.2009.09.055.
  23. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499-511. doi: 10.1038/nri1391.
  24. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344-62. doi: 10.1016/j. cell.2008.01.020.
  25. Dalvi PS, Chalmers JA, Luo V, Han DY, Wellhauser L, Liu Y, et al. High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-α on appetite-regulating NPY neurons. Int J Obes (Lond). 2017;41(1):149-58. doi: 10.1038/ijo.2016.183.
  26. Shabbir A, Rathod KS, Khambata RS, Ahluwalia A. Sex differences in the inflammatory response: pharmacological opportunities for therapeutics for coronary artery disease. Annu Rev Pharmacol Toxicol. 2021;61:333-59. doi: 10.1146/ annurev-pharmtox-010919-023229.
  27. Chopra K, Bansal S, Sachdeva AK. Phytochemicals: potential in management of climacteric neurobiology. Curr Pharm Des. 2016;22(27):4098-110. doi: 10.2174/138161282266616060 7071839.
  28. Ullah R, Rauf N, Nabi G, Yi S, Yu-Dong Z, Fu J. Mechanistic insight into high-fat diet-induced metabolic inflammation in the arcuate nucleus of the hypothalamus. Biomed Pharmacother. 2021;142:112012. doi: 10.1016/j.biopha.2021.112012.
  29. Das U. Ageing, telomere, stem cells biology and inflammation and their relationship to polyunsaturated fatty acids. Agro Food Ind Hi Tech. 2015;26(1):38-40.
  30. Bektas A, Schurman SH, Sen R, Ferrucci L. Aging, inflammation and the environment. Exp Gerontol. 2018;105:10-8. doi: 10.1016/j.exger.2017.12.015.
  31. Pfeilschifter J, Köditz R, Pfohl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocr Rev. 2002;23(1):90-119. doi: 10.1210/edrv.23.1.0456.
  32. Ishihara Y, Itoh K, Ishida A, Yamazaki T. Selective estrogenreceptor modulators suppress microglial activation and neuronal cell death via an estrogen receptor-dependent pathway. J Steroid Biochem Mol Biol. 2015;145:85-93. doi: 10.1016/j.jsbmb.2014.10.002.
  33. Villa A, Vegeto E, Poletti A, Maggi A. Estrogens, neuroinflammation, and neurodegeneration. Endocr Rev. 2016;37(4):372-402. doi: 10.1210/er.2016-1007.
  34. Suuronen T, Nuutinen T, Huuskonen J, Ojala J, Thornell A, Salminen A. Anti-inflammatory effect of selective estrogen receptor modulators (SERMs) in microglial cells. Inflamm Res. 2005;54(5):194-203. doi: 10.1007/s00011-005-1343-z.