Document Type : Original Article
Authors
1 Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
2 Department of Physiology and Pharmacology, Afzali Pour School of Medicine and Physiology Research Center, Neuropharmacology Research Institute, Kerman University of Medical Sciences, Kerman, Iran
Abstract
Background:The histone methyltransferase (SMYD1) and the muscle-specific protein (PERM1) play an important role in maintaining cardiac energetics and function. The present study aimed to examine the effect of two types of endurance training (running and swimming) plus MitoQ supplementation on gene expression of PERM1 and SMYD1 plus hemodynamic function in the cardiac muscle of male Wistar rats.
Methods: The animals underwent MitoQ supplementation or endurance training or endurance training + MitoQ supplementation for eight weeks. Gene expression of PERM1 and SMYD1, measured by Real Time-PCR and quantified by 2-∆∆CT method, and hemodynamic function were compared between groups using two-way multivariate analysis of variance.
Results: Cardiac gene expression of PERM1 and SMYD1 increased significantly through running (PERM1, P < 0.05; SMYD1, P < 0.01), swimming (PERM1, P < 0.05; SMYD1, P < 0.05). and MitoQ supplementation (PERM1, P < 0.001). The effects of MitoQ supplementation were additive to both running and swimming effects on cardiac gene expression of (PERM1, P < 0.001; SMYD1, P < 0.05). Swimming-induced enhancement in cardiac expression of PERM1 and SMYD1 was associated with a significant increase in ±dP/dt max (P < 0.05)).
Conclusion: Expression of genes involved in cardiac metabolism can be affected by endurance training and this effect could be improved through MitoQ supplementation
Highlights
mahboube salajeghe tezergi(google scholar)(pubmed)
Daruosh Moflehi(google scholar)(pubmed)
Soheil Aminizadeh(google scholar)(pubmed)
Rohollah Nikooie(google scholar)(pubmed)
Keywords
Main Subjects
- Hall JE, Hall ME. Guyton and Hall Textbook of Medical Physiology E-Book. Elsevier Health Sciences; 2020.
- Kartha CC. Energy metabolism in cardiomyocyte. In: Cardiomyocytes in Health and Disease. Cham: Springer; 2021. p. 73-92. doi: 1007/978-3-030-85536-9_7.
- Saadeh K, Chadda KR, Ahmad S, Valli H, Nanthakumar N, Fazmin IT, et al. Molecular basis of ventricular arrhythmogenicity in a PGC-1α deficient murine model. Mol Genet Metab Rep. 2021;27:100753. doi: 1016/j. ymgmr.2021.100753.
- Zhou Q, Zhang XY, Ye L, Xu H, Xie M, Zhang Y, et al. Role of ERRα in regulating ATP synthesis in hiPSCs-derived cardiomyocytes. Medical Journal of Chinese People’s Liberation Army. 2020;45(6):596-603. doi: 11855/j. issn.0577-7402.2020.06.04.
- Sakamoto T, Matsuura TR, Wan S, Ryba DM, Kim JU, Won KJ, et al. A critical role for estrogen-related receptor signaling in cardiac maturation. Circ Res. 2020;126(12):1685-702. doi: 1161/circresaha.119.316100.
- Warren JS, Tracy CM, Miller MR, Makaju A, Szulik MW, Oka SI, et al. Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc Natl Acad Sci U S A. 2018;115(33):E7871-E80. doi: 1073/pnas.1800680115.
- Oka S, Sabry A, Horiuchi A, Cawley K, O’Very S, Zaitsev M, et al. Perm1 is a novel regulator of cardiac energetics and function. Circ Res. 2020;127(Suppl 1):A289. doi: 1161/ res.127.suppl_1.289.
- Oka SI, Sabry AD, Horiuchi AK, Cawley KM, O’Very SA, Zaitsev MA, et al. Perm1 regulates cardiac energetics as a downstream target of the histone methyltransferase Smyd1. PLoS One. 2020;15(6):e0234913. doi: 1371/journal. pone.0234913.
- Aravamudhan S, Türk C, Bock T, Keufgens L, Nolte H, Lang F, et al. Phosphoproteomics of the developing heart identifies Perm1 - an outer mitochondrial membrane protein. J Mol Cell Cardiol. 2021;154:41-59. doi: 1016/j.yjmcc.2021.01.010.
- Cho Y, Hazen BC, Gandra PG, Ward SR, Schenk S, Russell AP, et al. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. FASEB J. 2016;30(2):674-87. doi: 1096/fj.15-276360.
- Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z. Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci. 2015;16(1):1406-28. doi: 3390/ ijms16011406.
- Wang Z, Schwartz RJ, Liu J, Sun F, Li Q, Ma Y. Smyd1 orchestrates early heart development through positive and negative gene regulation. Front Cell Dev Biol. 2021;9:654682. doi: 3389/fcell.2021.654682.
- Sharma A, Wasson LK, Willcox JA, Morton SU, Gorham JM, DeLaughter DM, et al. GATA6 mutations in hiPSCs inform mechanisms for maldevelopment of the heart, pancreas, and diaphragm. Elife. 2020;9. doi: 7554/eLife.53278.
- Finck BN, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation. 2007;115(19):2540-8. doi: 1161/circulationaha.107.670588.
- Stølen TO, Høydal MA, Ahmed MS, Jørgensen K, Garten K, Hortigon-Vinagre MP, et al. Exercise training reveals micro-RNAs associated with improved cardiac function and electrophysiology in rats with heart failure after myocardial infarction. J Mol Cell Cardiol. 2020;148:106-19. doi: 1016/j.yjmcc.2020.08.015.
- Conceição LSR, Gois CO, Fernandes RES, Martins-Filho PRS, Gomes MN, Neves VR, et al. Effect of high-intensity interval training on aerobic capacity and heart rate control of heart transplant recipients: a systematic review with meta-analysis. Braz J Cardiovasc Surg. 2021;36(1):86-93. doi: 21470/1678-9741-2019-0420.
- Prokic V, Plecevic S, Bradic J, Petkovic A, Srejovic I, Bolevich S, et al. The impact of nine weeks swimming exercise on heart function in hypertensive and normotensive rats: role of cardiac oxidative stress. J Sports Med Phys Fitness. 2019;59(12):2075- 83. doi: 23736/s0022-4707.19.09798-6.
- De Angelis K, da Pureza DY, Flores LJ, Rodrigues B, Melo KF, Schaan BD, et al. [Physiological effects of exercise training in patients with type 1 diabetes]. Arq Bras Endocrinol Metabol. 2006;50(6):1005-13. doi: 1590/s0004- 27302006000600005. [Portuguese].
- Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: current evidence and mechanistic insights. Redox Biol. 2020;35:101471. doi: 1016/j.redox.2020.101471.
- Cho Y, Tachibana S, Hazen BC, Moresco JJ, Yates JR 3rd, Kok B, et al. Perm1 regulates CaMKII activation and shapes skeletal muscle responses to endurance exercise training. Mol Metab. 2019;23:88-97. doi: 1016/j.molmet.2019.02.009.
- Liang Q, Cai M, Zhang J, Song W, Zhu W, Xi L, et al. Role of muscle-specific histone methyltransferase (Smyd1) in exercise-induced cardioprotection against pathological remodeling after myocardial infarction. Int J Mol Sci. 2020;21(19):7010. doi: 3390/ijms21197010.
- Ribeiro Junior RF, Dabkowski ER, Shekar KC, Connell KA, Hecker PA, Murphy MP. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload. Free Radic Biol Med. 2018;117:18-29. doi: 1016/j. freeradbiomed.2018.01.012.
- Yancey DM, Guichard JL, Ahmed MI, Zhou L, Murphy MP, Johnson MS, et al. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. Am J Physiol Heart Circ Physiol. 2015;308(6):H651-63. doi: 1152/ajpheart.00638.2014.
- Goh KY, He L, Song J, Jinno M, Rogers AJ, Sethu P, et al. Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice. Redox Biol. 2019;21:101100. doi: 1016/j.redox.2019.101100.
- Williamson J, Hughes CM, Cobley JN, Davison GW. The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage. Redox Biol. 2020;36:101673. doi: 1016/j.redox.2020.101673.
- Xi Y, Feng D, Tao K, Wang R, Shi Y, Qin H, et al. MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α. Biochim Biophys Acta Mol Basis Dis. 2018;1864(9 Pt B):2859-70. doi: 1016/j. bbadis.2018.05.018.
- Rodrigues JA, Prímola-Gomes TN, Soares LL, Leal TF, Nóbrega C, Pedrosa DL, et al. Physical exercise and regulation of intracellular calcium in cardiomyocytes of hypertensive rats. Arq Bras Cardiol. 2018;111(2):172-9. doi: 5935/ abc.20180113.
- da Rocha GL, Crisp AH, de Oliveira MR, da Silva CA, Silva JO, Duarte AC, et al. Effect of high intensity interval and continuous swimming training on body mass adiposity level and serum parameters in high-fat diet fed rats. ScientificWorldJournal. 2016;2016:2194120. doi: 1155/2016/2194120.
- Rodriguez-Cuenca S, Cochemé HM, Logan A, Abakumova I, Prime TA, Rose C, et al. Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Free Radic Biol Med. 2010;48(1):161-72. doi: 1016/j.freeradbiomed.2009.10.039.
- Gioscia-Ryan RA, LaRocca TJ, Sindler AL, Zigler MC, Murphy MP, Seals DR. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J Physiol. 2014;592(12):2549-61. doi: 1113/ jphysiol.2013.268680.
- Joukar S, Najafipour H, Dabiri S, Sheibani M, Sharokhi N. Cardioprotective effect of mumie (shilajit) on experimentally induced myocardial injury. Cardiovasc Toxicol. 2014;14(3):214-21. doi: 10.1007/s12012-014-9245-3.
- Rostami A, Tadibi V, Behpoor N, Ahmadiasl N. Effects of endurance and resistance training and garlic supplementation on cardiac function, cardiovascular risk factors and apoptosis indices in rats with metabolic syndrome. Res Sq [Preprint]. February 19, 2021. Available from: https://www. researchsquare.com/article/rs-215592/v1.
- Khajehlandi M, Bolboli L, Siahkuhian M, Rami M, Tabandeh M, Khoramipour K, et al. Endurance training regulates expression of some angiogenesis-related genes in cardiac tissue of experimentally induced diabetic rats. Biomolecules. 2021;11(4):498. doi: 10.3390/biom11040498.
- Gunadi JW, Tarawan VM, Setiawan I, Lesmana R, Wahyudianingsih R, Supratman U. Cardiac hypertrophy is stimulated by altered training intensity and correlates with autophagy modulation in male Wistar rats. BMC Sports Sci Med Rehabil. 2019;11:9. doi: 10.1186/s13102-019-0121-0.
- Gholipour M, Tabrizi A. The role of Hippo signaling pathway in physiological cardiac hypertrophy. Bioimpacts. 2020;10(4):251-7. doi: 10.34172/bi.2020.32.
- Kregel KC, Allen DL, Booth FW, Fleshner MR, Henriksen EJ, Musch TI, et al. Resource Book for the Design of Animal Exercise Protocols. American Physiological Society; 2006. p. 152.
- Baptista S, Piloto N, Reis F, Teixeira-de-Lemos E, Garrido AP, Dias A, et al. Treadmill running and swimming imposes distinct cardiovascular physiological adaptations in the rat: focus on serotonergic and sympathetic nervous systems modulation. Acta Physiol Hung. 2008;95(4):365-81. doi: 10.1556/APhysiol.2008.0002.
- Negrão CE, Pereira-Barretto AC, Rondon MU. Cardiologia do Exercício: Do Atleta ao Cardiopata. São Paulo: Manole; 2019. p. 836.
- Tracy C, Warren JS, Szulik M, Wang L, Garcia J, Makaju A, et al. The Smyd family of methyltransferases: role in cardiac and skeletal muscle physiology and pathology. Curr Opin Physiol. 2018;1:140-52. doi: 10.1016/j.cophys.2017.10.001.
- Wang SY, Zhu S, Wu J, Zhang M, Xu Y, Xu W, et al. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. J Mol Med (Berl). 2020;98(2):245-61. doi: 10.1007/s00109-019-01861-2.
- Jia D, Hou L, Lv Y, Xi L, Tian Z. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/ Akt signaling. J Cell Physiol. 2019;234(12):23705-18. doi: 10.1002/jcp.28939.
- Moustafa A, Arisha AH. Swim therapy-induced tissue specific metabolic responses in male rats. Life Sci. 2020;262:118516. doi: 10.1016/j.lfs.2020.118516.
- Sylviana N, Helja N, Qolbi HH, Goenawan H, Lesmana R, Syamsunarno MR, et al. Effect of swimming exercise to cardiac PGC-1 α and HIF-1 α gene expression in mice. Asian J Sports Med. 2018;9(4):e65079. doi: 10.5812/asjsm.65079.
- Vujic A, Lerchenmüller C, Wu TD, Guillermier C, Rabolli CP, Gonzalez E, et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat Commun. 2018;9(1):1659. doi: 10.1038/s41467-018-04083-1.
- Palabiyik O, Tastekin E, Doganlar ZB, Tayfur P, Dogan A, Vardar SA. Alteration in cardiac PI3K/Akt/mTOR and ERK signaling pathways with the use of growth hormone and swimming, and the roles of miR21 and miR133. Biomed Rep. 2019;10(2):97-106. doi: 10.3892/br.2018.1179.
- Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL, et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. hypertension. 2018;71(6):1056- 63. doi: 10.1161/hypertensionaha.117.10787.
- Wani WY, Gudup S, Sunkaria A, Bal A, Singh PP, Kandimalla RJ, et al. Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain. Neuropharmacology. 2011;61(8):1193- 201. doi: 10.1016/j.neuropharm.2011.07.008.
- Sulaimon LA, Afolabi LO, Adisa RA, Ayankojo AG, Afolabi MO, Adewolu AM, et al. Pharmacological significance of MitoQ in ameliorating mitochondria-related diseases. Adv Redox Res. 2022;5:100037. doi: 10.1016/j.arres.2022.100037.
- Masoumi-Ardakani Y, Najafipour H, Nasri HR, Aminizadeh S, Jafari S, Safi Z. Moderate endurance training and MitoQ improve cardiovascular function, oxidative stress, and inflammation in hypertensive individuals: the role of miR-21 and miR-222: a randomized, double-blind, clinical trial. Cell J. 2022;24(10):577-85. doi: 10.22074/cellj.2022.8089.
- Lima LCR, Barreto RV, Bassan NM, Greco CC, Denadai BS. Consumption of an anthocyanin-rich antioxidant juice accelerates recovery of running economy and indirect markers of exercise-induced muscle damage following downhill running. Nutrients. 2019;11(10):2274. doi: 10.3390/ nu11102274.
- Broome SC, Braakhuis AJ, Mitchell CJ, Merry TL. Mitochondria-targeted antioxidant supplementation improves 8 km time trial performance in middle-aged trained male cyclists. J Int Soc Sports Nutr. 2021;18(1):58. doi: 10.1186/ s12970-021-00454-0.