Document Type : Review Article

Authors

1 Department of Anatomical Sciences, and Pathology and Stem Cell Research Centre, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran

2 Pathology and Stem Cell Research Centre, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran

3 Department of Basic sciences, Faculty of Medicine, Kerman Branch, Islamic Azad University, Kerman, Iran

4 Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran

5 Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

6 Neuroscience Research Center, Institute of Neuropharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

7 Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran

8 Department of Anatomical Sciences, and Pathology and Stem Cell Research Centre, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

Abstract

One of the most common causes of global death is cardiovascular disease (CVD). Using mesenchymal stem cell (MSC) therapy for treating CVDs is revolutionizing regenerative medicine. Some challenges that have limited MSC therapy’s practical application include cell harvesting difficulty, ectopic transplantation, spontaneous differentiation to cartilage and bone, and possible immune responses following transplantation. MSCs release extracellular vesicles and biologically active molecules such as growth factors, chemokines, and cytokines, collectively called the secretome. Recent studies have shown that secretome administration could replace MSC transplantation. The secretome of MSCs plays a crucial role in controlling inflammatory reactions, enhancing tissue reperfusion by stimulating angiogenesis and vasculogenesis, preventing apoptosis and fibrosis development, and fostering the proliferation and differentiation of cardiac stem cells. This review discusses the current knowledge of MSC secretome application in cardiac regenerative medicine. It introduces possible approaches to improve cardiac recovery outcomes by utilizing the secretome in the clinic.

Keywords

Main Subjects

  1. Baghalishahi M, Efthekhar-Vaghefi SH, Piryaei A, Nematolahi- Mahani SN, Mollaei HR, Sadeghi Y. Cardiac extracellular matrix hydrogel together with or without inducer cocktail improves human adipose tissue-derived stem cells differentiation into cardiomyocyte-like cells. Biochem Biophys Res Commun. 2018;502(2):215-25. doi: 10.1016/j.bbrc.2018.05.147.
  2. Saheli M, Pirhajati Mahabadi V, Mesbah-Namin SA, Seifalian A, Bagheri-Hosseinabadi Z. DNA methyltransferase inhibitor 5-azacytidine in high dose promotes ultrastructural maturation of cardiomyocyte. Stem Cell Investig. 2020;7:22. doi: 10.21037/sci-2020-007.
  3. Arslan YE, Galata YF, Sezgin Arslan T, Derkus B. Trans-differentiation of human adipose-derived mesenchymal stem cells into cardiomyocyte-like cells on decellularized bovine myocardial extracellular matrix-based films. J Mater Sci Mater Med. 2018;29(8):127. doi: 10.1007/s10856-018-6135-4.
  4. Wu KH, Liu YL, Zhou B, Han ZC. Cellular therapy and myocardial tissue engineering: the role of adult stem and progenitor cells. Eur J Cardiothorac Surg. 2006;30(5):770-81. doi: 10.1016/j.ejcts.2006.08.003.
  5. Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, et al. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6(6):2028-34. doi: 10.1016/j. actbio.2009.12.033.
  6. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation. 1994;89(1):151-63. doi: 10.1161/01.cir.89.1.151.
  7. Guo X, Bai Y, Zhang L, Zhang B, Zagidullin N, Carvalho K, et al. Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications. Stem Cell Res Ther. 2018;9(1):44. doi: 10.1186/s13287-018-0773-9.
  8. Padda J, Sequiera GL, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: hits and misses. Can J Physiol Pharmacol. 2015;93(10):835-41. doi: 10.1139/cjpp-2014-0468.
  9. Weymann A, Loganathan S, Takahashi H, Schies C, Claus B, Hirschberg K, et al. Development and evaluation of a perfusion decellularization porcine heart model-- generation of 3-dimensional myocardial neoscaffolds. Circ J. 2011;75(4):852-60. doi: 10.1253/circj.cj-10-0717.
  10. Nugent HM, Edelman ER. Tissue engineering therapy for cardiovascular disease. Circ Res. 2003;92(10):1068-78. doi: 10.1161/01.res.0000073844.41372.38.
  11. Lin B, Lu TY, Yang L. Hear the beat: decellularized mouse heart regenerated with human induced pluripotent stem cells. Expert Rev Cardiovasc Ther. 2014;12(2):135-7. doi: 10.1586/14779072.2014.879039.
  12. Zamilpa R, Navarro MM, Flores I, Griffey S. Stem cell mechanisms during left ventricular remodeling post-myocardial infarction: repair and regeneration. World J Cardiol. 2014;6(7):610-20. doi: 10.4330/wjc.v6.i7.610.
  13. Ji ST, Kim H, Yun J, Chung JS, Kwon SM. Promising therapeutic strategies for mesenchymal stem cell-based cardiovascular regeneration: from cell priming to tissue engineering. Stem Cells Int. 2017;2017:3945403. doi: 10.1155/2017/3945403.
  14. Brychtova M, Thiele JA, Lysak D, Holubova M, Kralickova M, Vistejnova L. Mesenchymal stem cells as the near future of cardiology medicine - truth or wish? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019;163(1):8-18. doi: 10.5507/bp.2018.071.
  15. Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, et al. Ginsenosides on stem cells fate specification—a novel perspective. Front Cell Dev Biol. 2023;11:1190266. doi: 10.3389/ fcell.2023.1190266.
  16. Ge M, Zhang Y, Hao Q, Zhao Y, Dong B. Effects of mesenchymal stem cells transplantation on cognitive deficits in animal models of Alzheimer’s disease: a systematic review and meta-analysis. Brain Behav. 2018;8(7):e00982. doi: 10.1002/brb3.982.
  17. Barad L, Schick R, Zeevi-Levin N, Itskovitz-Eldor J, Binah O. Human embryonic stem cells vs human induced pluripotent stem cells for cardiac repair. Can J Cardiol. 2014;30(11):1279- 87. doi: 10.1016/j.cjca.2014.06.023.
  18. He X, Wang Q, Zhao Y, Zhang H, Wang B, Pan J, et al. Effect of intramyocardial grafting collagen scaffold with mesenchymal stromal cells in patients with chronic ischemic heart disease: a randomized clinical trial. JAMA Netw Open. 2020;3(9):e2016236. doi: 10.1001/ jamanetworkopen.2020.16236.
  19. Balbi C, Bollini S. Fetal and perinatal stem cells in cardiac regeneration: moving forward to the paracrine era. Placenta. 2017;59:96-106. doi: 10.1016/j.placenta.2017.04.008.
  20. Saheli M, Bayat M, Ganji R, Hendudari F, Kheirjou R, Pakzad M, et al. Human mesenchymal stem cells-conditioned medium improves diabetic wound healing mainly through modulating fibroblast behaviors. Arch Dermatol Res. 2020;312(5):325-36. doi: 10.1007/s00403-019-02016-6.
  21. Lee S, Heo J, Ahn EK, Kim JH, Kim YH, Chang HK, et al. Conditioned secretome of adipose-derived stem cells improves dextran sulfate sodium-induced colitis in mice. World J Gastroenterol. 2021;27(23):3342-56. doi: 10.3748/ wjg.v27.i23.3342.
  22. Araújo B, Silva RC, Domingues S, Salgado AJ, Teixeira FG. Mesenchymal stem cell secretome: a potential biopharmaceutical component to regenerative medicine? In: Haider KH, ed. Handbook of Stem Cell Therapy. Singapore: Springer; 2022. p. 1-33. doi: 10.1007/978-981-16-6016- 0_46-1.
  23. Laugwitz KL, Moretti A, Caron L, Nakano A, Chien KR. Islet1 cardiovascular progenitors: a single source for heart lineages? Development. 2008;135(2):193-205. doi: 10.1242/ dev.001883.
  24. Nakano A, Nakano H, Chien KR. Multipotent islet-1 cardiovascular progenitors in development and disease. Cold Spring Harb Symp Quant Biol. 2008;73:297-306. doi: 10.1101/sqb.2008.73.055.
  25. Bhuvanalakshmi G, Arfuso F, Kumar AP, Dharmarajan A, Warrier S. Epigenetic reprogramming converts human Wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators. Stem Cell Res Ther. 2017;8(1):185. doi: 10.1186/s13287-017- 0638-7.
  26. Choi JW, Moon H, Jung SE, Lim S, Lee S, Kim IK, et al. Hypoxia rapidly induces the expression of cardiomyogenic factors in human adipose-derived adherent stromal cells. J Clin Med. 2019;8(8):1231. doi: 10.3390/jcm8081231.
  27. Han C, Zhou J, Liang C, Liu B, Pan X, Zhang Y, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci. 2019;7(7):2920-33. doi: 10.1039/ c9bm00101h.
  28. Ma J, Zhao Y, Sun L, Sun X, Zhao X, Sun X, et al. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med. 2017;6(1):51-9. doi: 10.5966/ sctm.2016-0038.
  29. Jin H, Sanberg PR, Henning RJ. Human umbilical cord blood mononuclear cell-conditioned media inhibits hypoxic-induced apoptosis in human coronary artery endothelial cells and cardiac myocytes by activation of the survival protein Akt. Cell Transplant. 2013;22(9):1637-50. doi: 10.3727/096368912x661427.
  30. Tang JM, Wang JN, Zhang L, Zheng F, Yang JY, Kong X, et al. VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc Res. 2011;91(3):402-11. doi: 10.1093/cvr/cvr053.
  31. Psaltis PJ, Paton S, See F, Arthur A, Martin S, Itescu S, et al. Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol. 2010;223(2):530-40. doi: 10.1002/jcp.22081.
  32. Ng WH, Umar Fuaad MZ, Azmi SM, Leong YY, Yong YK, Ng AM, et al. Guided evaluation and standardisation of mesenchymal stem cell culture conditions to generate conditioned medium favourable to cardiac c-kit cell growth. Cell Tissue Res. 2019;375(2):383-96. doi: 10.1007/s00441- 018-2918-7.
  33. Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, et al. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 2018;7(15):e008737. doi: 10.1161/jaha.118.008737.
  34. Ma T, Chen Y, Chen Y, Meng Q, Sun J, Shao L, et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int. 2018;2018:3290372. doi: 10.1155/2018/3290372.
  35. Zhang Y, Chiu S, Liang X, Chai YH, Qin Y, Wang J, et al. Absence of NUCKS augments paracrine effects of mesenchymal stem cells-mediated cardiac protection. Exp Cell Res. 2017;356(1):74-84. doi: 10.1016/j.yexcr.2017.04.012.
  36. Dong F, Patnaik S, Duan ZH, Kiedrowski M, Penn MS, Mayorga ME. A novel role for CAMKK1 in the regulation of the mesenchymal stem cell secretome. Stem Cells Transl Med. 2017;6(9):1759-66. doi: 10.1002/sctm.17-0046.
  37. Haneef K, Naeem N, Khan I, Iqbal H, Kabir N, Jamall S, et al. Conditioned medium enhances the fusion capability of rat bone marrow mesenchymal stem cells and cardiomyocytes. Mol Biol Rep. 2014;41(5):3099-112. doi: 10.1007/s11033- 014-3170-1.
  38. Shuang T, Fu M, Yang G, Wu L, Wang R. The interaction of IGF- 1/IGF-1R and hydrogen sulfide on the proliferation of mouse primary vascular smooth muscle cells. Biochem Pharmacol. 2018;149:143-52. doi: 10.1016/j.bcp.2017.12.009.
  39. Zhang GW, Gu TX, Guan XY, Sun XJ, Qi X, Li XY, et al. HGF and IGF-1 promote protective effects of allogeneic BMSC transplantation in rabbit model of acute myocardial infarction. Cell Prolif. 2015;48(6):661-70. doi: 10.1111/cpr.12219.
  40. Andrade D, Oliveira G, Menezes L, Nascimento AL, Carvalho S, Stumbo AC, et al. Insulin-like growth factor-1 short-period therapy improves cardiomyopathy stimulating cardiac progenitor cells survival in obese mice. Nutr Metab Cardiovasc Dis. 2020;30(1):151-61. doi: 10.1016/j.numecd.2019.09.001.
  41. Tang X, Jiang H, Lin P, Zhang Z, Chen M, Zhang Y, et al. Insulin-like growth factor binding protein-1 regulates HIF-1α degradation to inhibit apoptosis in hypoxic cardiomyocytes. Cell Death Discov. 2021;7(1):242. doi: 10.1038/s41420-021- 00629-3.
  42. Yi Q, Xu H, Yang K, Wang Y, Tan B, Tian J, et al. Islet-1 induces the differentiation of mesenchymal stem cells into cardiomyocyte-like cells through the regulation of Gcn5 and DNMT-1. Mol Med Rep. 2017;15(5):2511-20. doi: 10.3892/ mmr.2017.6343.
  43. Hafez P, Jose S, Chowdhury SR, Ng MH, Ruszymah BH, Abdul Rahman Mohd R. Cardiomyogenic differentiation of human sternal bone marrow mesenchymal stem cells using a combination of basic fibroblast growth factor and hydrocortisone. Cell Biol Int. 2016;40(1):55-64. doi: 10.1002/ cbin.10536.
  44. Yang X, Hao J, Mao Y, Jin ZQ, Cao R, Zhu CH, et al. bFGF promotes migration and induces cancer-associated fibroblast differentiation of mouse bone mesenchymal stem cells to promote tumor growth. Stem Cells Dev. 2016;25(21):1629- 39. doi: 10.1089/scd.2016.0217.
  45. Rodrigues M, Griffith LG, Wells A. Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res Ther. 2010;1(4):32. doi: 10.1186/scrt32.
  46. Khanabdali R, Rosdah AA, Dusting GJ, Lim SY. Harnessing the secretome of cardiac stem cells as therapy for ischemic heart disease. Biochem Pharmacol. 2016;113:1-11. doi: 10.1016/j. bcp.2016.02.012.
  47. Wang X, Zhen L, Miao H, Sun Q, Yang Y, Que B, et al. Concomitant retrograde coronary venous infusion of basic fibroblast growth factor enhances engraftment and differentiation of bone marrow mesenchymal stem cells for cardiac repair after myocardial infarction. Theranostics. 2015;5(9):995-1006. doi: 10.7150/thno.11607.
  48. Liguori TT, Liguori GR, Moreira LF, Harmsen MC. Fibroblast growth factor-2, but not the adipose tissue-derived stromal cells secretome, inhibits TGF-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts. Sci Rep. 2018;8(1):16633. doi: 10.1038/s41598-018-34747-3.
  49. Mohr T, Haudek-Prinz V, Slany A, Grillari J, Micksche M, Gerner C. Proteome profiling in IL-1β and VEGF-activated human umbilical vein endothelial cells delineates the interlink between inflammation and angiogenesis. PLoS One. 2017;12(6):e0179065. doi: 10.1371/journal.pone.0179065.
  50. Hezam K, Mo R, Wang C, Liu Y, Li Z. Anti-inflammatory effects of mesenchymal stem cells and their secretomes in pneumonia. Curr Pharm Biotechnol. 2022;23(9):1153-67. doi: 10.2174/1389201022666210907115126.
  51. Gabrielyan A, Quade M, Gelinsky M, Rösen-Wolff A. IL-11 and soluble VCAM-1 are important components of hypoxia conditioned media and crucial for mesenchymal stromal cells attraction. Stem Cell Res. 2020;45:101814. doi: 10.1016/j. scr.2020.101814.
  52. Widowati W, Widyastuti H, Murti H, Laksmitawati DR, Maesaroh M, Sumitro SB, et al. WITHDRAWN: interleukins and VEGF secretome of human Wharton’s jelly mesenchymal stem cells-conditioned medium (hWJMSCs-CM) in different passages and oxygen tensions. In: Biomarkers and Genomic Medicine. Elsevier; 2016. doi: 10.1016/j.bgm.2016.02.001.
  53. Massagué J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103(2):295- 309. doi: 10.1016/s0092-8674(00)00121-5.
  54. Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003;3(11):807-21. doi: 10.1038/nrc1208.
  55. Ramesh S, Singh A, Cibi DM, Hausenloy DJ, Singh MK. In vitro culture of epicardial cells from mouse embryonic heart. J Vis Exp. 2016(110):53993. doi: 10.3791/53993.
  56. Mizuno M, Katano H, Otabe K, Komori K, Kohno Y, Fujii S, et al. Complete human serum maintains viability and chondrogenic potential of human synovial stem cells: suitable conditions for transplantation. Stem Cell Res Ther. 2017;8(1):144. doi: 10.1186/s13287-017-0596-0.
  57. Frangogiannis NG. Transforming growth factor-β in myocardial disease. Nat Rev Cardiol. 2022;19(7):435-55. doi: 10.1038/ s41569-021-00646-w.
  58. Zhang JM, Yu RQ, Wu FZ, Qiao L, Wu XR, Fu YJ, et al. BMP-2 alleviates heart failure with type 2 diabetes mellitus and doxorubicin-induced AC16 cell injury by inhibiting NLRP3 inflammasome-mediated pyroptosis. Exp Ther Med. 2021;22(2):897. doi: 10.3892/etm.2021.10329.
  59. Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, et al. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells. 2006;24(1):23-33. doi: 10.1634/stemcells.2004-0176.
  60. Huh CG, Factor VM, Sánchez A, Uchida K, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A. 2004;101(13):4477-82. doi: 10.1073/pnas.0306068101.
  61. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12(12):3657-60. doi: 10.1158/1078-0432.ccr-06-0818.
  62. Rappolee DA, Iyer A, Patel Y. Hepatocyte growth factor and its receptor are expressed in cardiac myocytes during early cardiogenesis. Circ Res. 1996;78(6):1028-36. doi: 10.1161/01.res.78.6.1028.
  63. Peng KY, Liu YH, Li YW, Yen BL, Yen ML. Extracellular matrix protein laminin enhances mesenchymal stem cell (MSC) paracrine function through αvβ3/CD61 integrin to reduce cardiomyocyte apoptosis. J Cell Mol Med. 2017;21(8):1572- 83. doi: 10.1111/jcmm.13087.
  64. Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE. Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Curr Stem Cell Res Ther. 2019;14(1):9- 13. doi: 10.2174/1574888x13666180821160421.
  65. Windmolders S, De Boeck A, Koninckx R, Daniëls A, De Wever O, Bracke M, et al. Mesenchymal stem cell secreted platelet derived growth factor exerts a pro-migratory effect on resident cardiac atrial appendage stem cells. J Mol Cell Cardiol. 2014;66:177-88. doi: 10.1016/j.yjmcc.2013.11.016.
  66. Xu B, Luo Y, Liu Y, Li BY, Wang Y. Platelet-derived growth factor- BB enhances MSC-mediated cardioprotection via suppression of miR-320 expression. Am J Physiol Heart Circ Physiol. 2015;308(9):H980-9. doi: 10.1152/ajpheart.00737.2014.
  67. Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005;39(5):733-42. doi: 10.1016/j.yjmcc.2005.07.003.
  68. Shabbir A, Zisa D, Suzuki G, Lee T. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol. 2009;296(6):H1888-97. doi: 10.1152/ajpheart.00186.2009.
  69. Haider H, Jiang S, Idris NM, Ashraf M. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/ CXCR4 signaling to promote myocardial repair. Circ Res. 2008;103(11):1300-8. doi: 10.1161/circresaha.108.186742.
  70. Nakanishi C, Yamagishi M, Yamahara K, Hagino I, Mori H, Sawa Y, et al. Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun. 2008;374(1):11-6. doi: 10.1016/j.bbrc.2008.06.074.
  71. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation. 2004;110(21):3300-5. doi: 10.1161/01. cir.0000147780.30124.cf.
  72. Zisa D, Shabbir A, Suzuki G, Lee T. Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair. Biochem Biophys Res Commun. 2009;390(3):834-8. doi: 10.1016/j.bbrc.2009.10.058.
  73. Markel TA, Wang Y, Herrmann JL, Crisostomo PR, Wang M, Novotny NM, et al. VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am J Physiol Heart Circ Physiol. 2008;295(6):H2308-14. doi: 10.1152/ajpheart.00565.2008.
  74. Wang Y, Haider HK, Ahmad N, Xu M, Ge R, Ashraf M. Combining pharmacological mobilization with intramyocardial delivery of bone marrow cells over-expressing VEGF is more effective for cardiac repair. J Mol Cell Cardiol. 2006;40(5):736-45. doi: 10.1016/j.yjmcc.2006.02.004.
  75. Huang P, Wang L, Li Q, Xu J, Xu J, Xiong Y, et al. Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Res Ther. 2019;10(1):300. doi: 10.1186/s13287-019-1353-3.
  76. Gallina C, Turinetto V, Giachino C. A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome. Stem Cells Int. 2015;2015:765846. doi: 10.1155/2015/765846.
  77. Zhang HC, Liu XB, Huang S, Bi XY, Wang HX, Xie LX, et al. Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev. 2012;21(18):3289-97. doi: 10.1089/scd.2012.0095.
  78. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;78(9):838-48. doi: 10.1038/ ki.2010.278.
  79. Tetta C, Bruno S, Fonsato V, Deregibus MC, Camussi G. The role of microvesicles in tissue repair. Organogenesis. 2011;7(2):105-15. doi: 10.4161/org.7.2.15782.
  80. Jadczyk T, Faulkner A, Madeddu P. Stem cell therapy for cardiovascular disease: the demise of alchemy and rise of pharmacology. Br J Pharmacol. 2013;169(2):247-68. doi: 10.1111/j.1476-5381.2012.01965.x.
  81. Laurenzana I, Lamorte D, Trino S, De Luca L, Ambrosino C, Zoppoli P, et al. Extracellular vesicles: a new prospective in crosstalk between microenvironment and stem cells in hematological malignancies. Stem Cells Int. 2018;2018:9863194. doi: 10.1155/2018/9863194.
  82. Kraus L, Mohsin S. Role of stem cell-derived microvesicles in cardiovascular disease. J Cardiovasc Pharmacol. 2020;76(6):650-7. doi: 10.1097/fjc.0000000000000920.
  83. Lawson C, Vicencio JM, Yellon DM, Davidson SM. Microvesicles and exosomes: new players in metabolic and cardiovascular disease. J Endocrinol. 2016;228(2):R57-71. doi: 10.1530/joe-15-0201.
  84. Zhao L, Hu C, Zhang P, Jiang H, Chen J. Genetic communication by extracellular vesicles is an important mechanism underlying stem cell-based therapy-mediated protection against acute kidney injury. Stem Cell Res Ther. 2019;10(1):119. doi: 10.1186/s13287-019-1227-8.
  85. Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21(R1):R125-34. doi: 10.1093/hmg/dds317.
  86. Haider KH, Aramini B. Mircrining the injured heart with stem cell-derived exosomes: an emerging strategy of cell-free therapy. Stem Cell Res Ther. 2020;11(1):23. doi: 10.1186/ s13287-019-1548-7.
  87. Kang T, Jones TM, Naddell C, Bacanamwo M, Calvert JW, Thompson WE, et al. Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31. Stem Cells Transl Med. 2016;5(4):440-50. doi: 10.5966/sctm.2015- 0177.
  88. Yuan Y, Du W, Liu J, Ma W, Zhang L, Du Z, et al. Stem cell-derived exosome in cardiovascular diseases: macro roles of micro particles. Front Pharmacol. 2018;9:547. doi: 10.3389/ fphar.2018.00547.
  89. Bian X, Ma K, Zhang C, Fu X. Therapeutic angiogenesis using stem cell-derived extracellular vesicles: an emerging approach for treatment of ischemic diseases. Stem Cell Res Ther. 2019;10(1):158. doi: 10.1186/s13287-019-1276-z.
  90. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl). 2014;92(4):387-97. doi: 10.1007/ s00109-013-1110-5.
  91. Ren S, Chen J, Duscher D, Liu Y, Guo G, Kang Y, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther. 2019;10(1):47. doi: 10.1186/s13287-019-1152-x.