Document Type : Original Article

Authors

1 Department of Basic Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

2 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.

Abstract

Background: Sexual function is one of the most important aspects of life and is likely to be affected by the side effects of antihypertensive drugs. This study aimed to evaluate the effect of propranolol and prazosin on the sexual performance of female three-spot gourami.
Methods: In this study, 84 female three-spot gourami were randomly divided into seven groups, including a control and six experimental groups. The experimental groups were injected with prazosin or propranolol at doses of 1, 2, and 4 mg/kg for twenty days. Finally, the histological morphology of the ovaries and sex hormone levels in the experimental groups were examined.
Results: Our experiments showed changes in the oocyte stages, progressing to the cortical and vitellogenesis stages in the treated groups. Additionally, sex hormone levels increased in the groups exposed to that of propranolol and prazosin compared to the controls. The gonadosomatic index (GSI) exhibited a trend similar to the hormonal changes. The weight and length of the fish remained unchanged across the different groups.
Conclusion: Our findings indicated that propranolol and prazosin, at the mentioned doses and treatment duration, had a positive effect on the sexual function of female three-spot gourami.

Keywords

Main Subjects

  1. Yusifov A, Borders MO, Woulfe KC, Bruns DR. Age- and sex-specific differences in activation of the cardiac adrenergic cascade. FASEB J. 2022;36(S1). doi: 10.1096/fasebj.2022.36. S1.R3672.
  2. Wilson PW. Established risk factors and coronary artery disease: the Framingham Study. Am J Hypertens. 1994;7(7 Pt 2):7S-12S. doi: 10.1093/ajh/7.7.7s.
  3. Wajngarten M, Silva GS. Hypertension and stroke: update on treatment. Eur Cardiol. 2019;14(2):111-5. doi: 10.15420/ ecr.2019.11.1.
  4. Toyoshima H, Takahashi K, Akera T. The impact of side effects on hypertension management: a Japanese survey. Clin Ther. 1997;19(6):1458-69. doi: 10.1016/s0149-2918(97)80019-7.
  5. Bardage C, Isacson DG. Self-reported side-effects of antihypertensive drugs: an epidemiological study on prevalence and impact on health-state utility. Blood Press. 2000;9(6):328-34. doi: 10.1080/080370500300000905.
  6. Morgado M, Rolo S, Macedo AF, Pereira L, Castelo- Branco M. Predictors of uncontrolled hypertension and antihypertensive medication nonadherence. J Cardiovasc Dis Res. 2010;1(4):196-202. doi: 10.4103/0975-3583.74263.
  7. Grégoire JP, Moisan J, Guibert R, Ciampi A, Milot A, Gaudet M, et al. Determinants of discontinuation of new courses of antihypertensive medications. J Clin Epidemiol. 2002;55(7):728-35. doi: 10.1016/s0895-4356(02)00400-6.
  8. Lin YP, Huang YH, Yang YC, Wu JS, Chang CJ, Lu FH. Adherence to antihypertensive medications among the elderly: a community-based survey in Tainan city, Southern Taiwan. Taiwan Geriatr Gerontol. 2007;2(3):176-89.
  9. Croog SH, Levine S, Sudilovsky A, Baume RM, Clive J. Sexual symptoms in hypertensive patients. A clinical trial of antihypertensive medications. Arch Intern Med. 1988;148(4):788-94.
  10. Neaton JD, Grimm RH Jr, Prineas RJ, Stamler J, Grandits GA, Elmer PJ, et al. Treatment of mild hypertension study. Final results. Treatment of Mild Hypertension Study Research Group. JAMA. 1993;270(6):713-24.
  11. Ogihara T, Nakagawa M, Ishikawa H, Mikami H, Takeda K, Nonaka H, et al. Effect of manidipine, a novel calcium channel blocker, on quality of life in hypertensive patients. Blood Press Suppl. 1992;3:135-9.
  12. Manolis A, Doumas M. Sexual dysfunction: the ‘prima ballerina’ of hypertension-related quality-of-life complications. J Hypertens. 2008;26(11):2074-84. doi: 10.1097/HJH.0b013e32830dd0c6.
  13. Okeahialam BN, Ogbonna C. Impact of hypertension on sexual function in women. West Afr J Med. 2010;29(5):344-8.
  14. Thomas HN, Evans GW, Berlowitz DR, Chertow GM, Conroy MB, Foy CG, et al. Antihypertensive medications and sexual function in women: baseline data from the SBP intervention trial (SPRINT). J Hypertens. 2016;34(6):1224-31. doi: 10.1097/ hjh.0000000000000911.
  15. Giraldi A, Marson L, Nappi R, Pfaus J, Traish AM, Vardi Y, et al. Physiology of female sexual function: animal models. J Sex Med. 2004;1(3):237-53. doi: 10.1111/j.1743-6109.04037.x.
  16. Fogari R, Preti P, Derosa G, Marasi G, Zoppi A, Rinaldi A, et al. Effect of antihypertensive treatment with valsartan or atenolol on sexual activity and plasma testosterone in hypertensive men. Eur J Clin Pharmacol. 2002;58(3):177-80. doi: 10.1007/ s00228-002-0456-3.
  17. Guay AT, Jacobson J. Decreased free testosterone and dehydroepiandrosterone-sulfate (DHEA-S) levels in women with decreased libido. J Sex Marital Ther. 2002;28 Suppl 1:129-42. doi: 10.1080/00926230252851258.
  18. Cawood EH, Bancroft J. Steroid hormones, the menopause, sexuality and well-being of women. Psychol Med. 1996;26(5):925-36. doi: 10.1017/s0033291700035261.
  19. Hrabia A. Reproduction in the female. In: Sturkie’s Avian Physiology. Elsevier; 2022. p. 921-66.
  20. Etgen AM, Ansonoff MA, Quesada A. Mechanisms of ovarian steroid regulation of norepinephrine receptor-mediated signal transduction in the hypothalamus: implications for female reproductive physiology. Horm Behav. 2001;40(2):169-77. doi: 10.1006/hbeh.2001.1676.
  21. Bongers AB, Sukkel M, Gort G, Komen J, Richter CJ. Development and use of genetically uniform strains of common carp in experimental animal research. Lab Anim. 1998;32(4):349-63. doi: 10.1258/002367798780599749.
  22. Nozaki M. Hypothalamic-pituitary-gonadal endocrine system in the hagfish. Front Endocrinol (Lausanne). 2013;4:200. doi: 10.3389/fendo.2013.00200.
  23. Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B. 2017;187(8):1057-89. doi: 10.1007/s00360-017-1094-5 .
  24. Löhr H, Hammerschmidt M. Zebrafish in endocrine systems: recent advances and implications for human disease. Annu Rev Physiol. 2011;73:183-211. doi: 10.1146/annurev-physiol-012110-142320.
  25. Degani G. Brain control reproduction by the endocrine system of female blue gourami (Trichogaster trichopterus). Biology (Basel). 2020;9(5):109. doi: 10.3390/biology9050109.
  26. Gabilondo AR, Pérez LH, Rodríguez RM. Hormonal and neuroendocrine control of reproductive function in teleost fish. Review in Bionatura. 2022;6:2122.
  27. Srivastava M, Kapoor NK. The effect of propranolol on rat brain catecholamine biosynthesis. J Biosci. 1983;5(3):261-6. doi: 10.1007/bf02716609.
  28. Jauchem JR, Frei MR, Chang KS, Berger RE. Microwave-induced lethal heat stress: effects of phentolamine, prazosin and metoprolol. Methods Find Exp Clin Pharmacol. 1995;17(4):241-8.
  29. Lê AD, Funk D, Juzytsch W, Coen K, Navarre BM, Cifani C, et al. Effect of prazosin and guanfacine on stress-induced reinstatement of alcohol and food seeking in rats. Psychopharmacology (Berl). 2011;218(1):89-99. doi: 10.1007/s00213-011-2178-7.
  30. Bagheri Ziari S, Naji T, Hosseinzadeh Sahafi H. Comparison of the effects of Origanum vulgare with LHRH-A2 and 17β-estradiol on the ultrastructure of gonadotroph cells and ovarian oogenesis in immature Trichogaster trichopterus. Anim Reprod Sci. 2015;161:32-9. doi: 10.1016/j. anireprosci.2015.07.009.
  31. Lenhardt M, Finn RN, Cakic P, Kolarevic J, Krpocetkovic J, Radovic I, et al. Analysis of the post-vitellogenic oocytes of three species of Danubian Acipenseridae. Belg J Zool. 2005;135(2):205-7.
  32. Bathaee M, Naji T, Hosseinzadeh Sahafi H. Investigation of the level of steroid hormones and mature female three spot gourami’s (Trichogaster trichopterus) oocytes maturation in facing alcoholic extract of (Vitex agnus-castus) and fluoxetine. J Anim Res (Iran J Biol). 2019;32(2):85-95.
  33. Brewer SK, Rabeni CF, Papoulias DM. Comparing histology and gonadosomatic index for determining spawning condition of small-bodied riverine fishes. Ecol Freshw Fish. 2008;17(1):54-8. doi: 10.1111/j.1600-0633.2007.00256.x.
  34. Cárdenas R, Chávez M, Luis González J, Aley P, Espinosa J, Jiménez-García LF. Oocyte structure and ultrastructure in the Mexican silverside fish Chirostoma humboldtianum (Atheriniformes: Atherinopsidae). Rev Biol Trop. 2008;56(4):1825-35.
  35. Roby K. 17-β estradiol. In: Reference Module in Biomedical Sciences. Elsevier; 2019.
  36. Polidoro JP, Howe GR, Black DL. The effects of adrenergic drugs on ovum transport through the rabbit oviduct. J Reprod Fertil. 1973;35(2):331-7. doi: 10.1530/jrf.0.0350331.
  1. Uematsu K. Urinogenital organs. In: Comparative Physiology and Evolution of the Autonomic Nervous System. Routledge; 2021. p. 311-29.
  2. Cossío-Bayúgar R, Miranda-Miranda E, Fernández-Rubalcaba M, Narváez Padilla V, Reynaud E. Adrenergic ligands that block oviposition in the cattle tick Rhipicephalus microplus affect ovary contraction. Sci Rep. 2015;5:15109. doi: 10.1038/srep15109.
  3. Scholz S, Klüver N. Effects of endocrine disrupters on sexual, gonadal development in fish. Sex Dev. 2009;3(2-3):136-51. doi: 10.1159/000223078.
  4. Baroiller JF, D’Cotta H. The reversible sex of gonochoristic fish: insights and consequences. Sex Dev. 2016;10(5-6):242- 66. doi: 10.1159/000452362.
  5. Hunter GA, Donaldson EM. 5 Hormonal sex control and its application to fish culture. In: Hoar WS, Randall DJ, Donaldson EM, eds. Fish Physiology. Vol 9. Academic Press; 1983. p. 223-303. doi: 10.1016/s1546-5098(08)60305-2.
  6. Santoro N, Worsley R, Miller KK, Parish SJ, Davis SR. Role of estrogens and estrogen-like compounds in female sexual function and dysfunction. J Sex Med. 2016;13(3):305-16. doi: 10.1016/j.jsxm.2015.11.015.
  7. Huggett DB, Brooks BW, Peterson B, Foran CM, Schlenk D. Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (B-blockers) on aquatic organisms. Arch Environ Contam Toxicol. 2002;43(2):229-35. doi: 10.1007/ s00244-002-1182-7.
  8. Junior MZ, Naufal MR, Setiawati M, Hardianto D. The sex ratio and testosterone levels in tilapia immersed in different doses of 17α-methyltestosterone. J Akuakultur Indones. 2017;16(1):51-9.
  9. Kagawa H, Young G, Nagahama Y. In vitro estradiol-17 beta and testosterone production by ovarian follicles of the goldfish, Carassius auratus. Gen Comp Endocrinol. 1984;54(1):139-43. doi: 10.1016/0016-6480(84)90209-0.
  10. Lee WK, Yang SW. Relationship between ovarian development and serum levels of gonadal steroid hormones, and induction of oocyte maturation and ovulation in the cultured female Korean spotted sea bass Lateolabrax maculatus (Jeom-nong-eo). Aquaculture. 2002;207(1-2):169-83. doi: 10.1016/ S0044-8486(01)00728-1.
  11. Yin N, Jin X, He J, Yin Z. Effects of adrenergic agents on the expression of zebrafish (Danio rerio) vitellogenin Ao1. Toxicol Appl Pharmacol. 2009;238(1):20-6. doi: 10.1016/j. taap.2009.04.004.
  12. Biswas SP. Manual of Methods in Fish Biology. South Asian Publishers; 1993.
  13. Szawka RE, Poletini MO, Leite CM, Bernuci MP, Kalil B, Mendonça LB, et al. Release of norepinephrine in the preoptic area activates anteroventral periventricular nucleus neurons and stimulates the surge of luteinizing hormone. Endocrinology. 2013;154(1):363-74. doi: 10.1210/en.2012- 1302.
  14. Parrott JL, Balakrishnan VK. Life-cycle exposure of fathead minnows to environmentally relevant concentrations of the β-blocker drug propranolol. Environ Toxicol Chem. 2017;36(6):1644-51. doi: 10.1002/etc.3703.