Document Type : Original Article
Authors
- Maryam Hosseini
- Sara Karimi
- Azhdar Heydari
- Hamidreza Banafshe
- Samaneh Sadat Alavi
- Mahsa Hadizade
- Hamidi Gholamali
Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
Abstract
Background: Diabetic neuropathy (DN) is known as the most troublesome of diabetes mellitus complications. There is a cross-talk between cyclooxygenase-2 (COX-2) and the enzyme NO synthase (NOS) in pain pathophysiology in the dorsal root ganglia and the spinal cord. This study aimed to determine the possible role of the NOS inhibitor, N(ω)-nitro-L-arginine methyl ester (L-NAME),
or the COX-2 inhibitor, celecoxib, alone and in interaction with each other, on hyperalgesia and allodynia in rats with DN.
Methods: Streptozotocin (STZ) (60 mg/kg, IP, once) was used to induce diabetes in male Wistar rats. After 72 hours, the animals were divided into groups that received celecoxib (5 mg/kg), L-arginine (L-ARG) (50 mg/kg), or L-NAME (50 mg/kg) alone and two groups that received a combination of celecoxib with either L-ARG or L-NAME. The von Frey and acetone tests were used to evaluate hyperalgesia and allodynia 14 days after treatment.
Results: A significant increase in the withdrawal threshold level was observed in the groups receiving celecoxib alone (P<0.001) and in combination with L-ARG (P<0.001) or L-NAME (P<0.001). The reaction percentage in the acetone test significantly decreased in the celecoxib, L-NAME, celecoxib+L-ARG, and celecoxib+L-NAME groups (P<0.001) compared with the diabetic control group.
Conclusion: The main finding was that inhibiting COX-2 and NOS reduced hyperalgesia and mechanical allodynia in diabetic rats. Also, the results revealed that there is cross-talk between these two enzymes.
Keywords
Main Subjects
- Zimmet P, Magliano D, Matsuzawa Y, Alberti G, Shaw J. The metabolic syndrome: a global public health problem and a new definition. J Atheroscler Thromb. 2005;12(6):295-300. doi: 10.5551/jat.12.295.
- Zochodne DW. Diabetes mellitus and the peripheral nervous system: manifestations and mechanisms. Muscle Nerve. 2007;36(2):144-66. doi: 10.1002/mus.20785.
- Braffett BH, Gubitosi-Klug RA, Albers JW, Feldman EL, Martin CL, White NH, et al. Risk factors for diabetic peripheral neuropathy and cardiovascular autonomic neuropathy in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study. Diabetes. 2020;69(5):1000-10. doi: 10.2337/db19-1046.
- Kirsner RS, Vivas AC. Lower-extremity ulcers: diagnosis and management. Br J Dermatol. 2015;173(2):379-90. doi: 10.1111/bjd.13953.
- Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70(18):1630-5. doi: 10.1212/01. wnl.0000282763.29778.59.
- Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev. 2021;101(1):259-301. doi: 10.1152/physrev.00045.2019.
- Humble SR. Neurosteroids are reduced in diabetic neuropathy and may be associated with the development of neuropathic pain. F1000Res. 2016;5:1923. doi: 10.12688/ f1000research.9034.1.
- Khan GM, Chen SR, Pan HL. Role of primary afferent nerves in allodynia caused by diabetic neuropathy in rats. Neuroscience. 2002;114(2):291-9. doi: 10.1016/s0306-4522(02)00372-x.
- Zeilhofer HU. Loss of glycinergic and GABAergic inhibition in chronic pain--contributions of inflammation and microglia. Int Immunopharmacol. 2008;8(2):182-7. doi: 10.1016/j. intimp.2007.07.009.
- Fitzpatrick FA. Cyclooxygenase enzymes: regulation and function. Curr Pharm Des. 2004;10(6):577-88. doi: 10.2174/1381612043453144.
- Smith WL, Marnett LJ, DeWitt DL. Prostaglandin and thromboxane biosynthesis. Pharmacol Ther. 1991;49(3):153- 79. doi: 10.1016/0163-7258(91)90054-p.
- Jang Y, Kim M, Hwang SW. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J Neuroinflammation. 2020;17(1):30. doi: 10.1186/s12974-020-1703-1.
- El-Malah AA, Gineinah MM, Deb PK, Khayyat AN, Bansal M, Venugopala KN, et al. Selective COX-2 inhibitors: road from success to controversy and the quest for repurposing. Pharmaceuticals (Basel). 2022;15(7):827. doi: 10.3390/ ph15070827.
- Gong L, Thorn CF, Bertagnolli MM, Grosser T, Altman RB, Klein TE. Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012;22(4):310-8. doi: 10.1097/FPC.0b013e32834f94cb.
- Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992;6(12):3051-64. doi: 10.1096/ fasebj.6.12.1381691.
- Kumar S, Singh RK, Bhardwaj TR. Therapeutic role of nitric oxide as emerging molecule. Biomed Pharmacother. 2017;85:182-201. doi: 10.1016/j.biopha.2016.11.125.
- Stratman NC, Carter DB, Sethy VH. Ibuprofen: effect on inducible nitric oxide synthase. Brain Res Mol Brain Res. 1997;50(1-2):107-12. doi: 10.1016/s0169-328x(97)00168-x.
- Lanas A. Role of nitric oxide in the gastrointestinal tract. Arthritis Res Ther. 2008;10(Suppl 2):S4. doi: 10.1186/ar2465.
- Alavi SS, Hamidi GA, Banafsheh HR, Hosseini M, Takhtfiroozeh SM, Afsordeh N, et al. Effect of celecoxib on serum visfatin levels in streptozotocin-induced diabetes in male rats: role of nitrergic system. Sci J Kurdistan Univ Med Sci. 2016;21(2):43- 52. doi: 10.22102/21.2.43.
- Hamidi GA, Heydari A, Banafshe H, Alavi SS, Arbabi E, Hadizade M, et al. Interaction of nitrergic system and cyclooxygenase-2 on serum level of leptin in diabetic neuropathy in male rats. Iran J Physiol Pharmacol. 2017;1(4):270-63.
- Sozer S, Diniz G, Lermioglu F. Effects of celecoxib in young rats: histopathological changes in tissues and alterations of oxidative stress/antioxidant defense system. Arch Pharm Res. 2011;34(2):253-9. doi: 10.1007/s12272-011-0211-3.
- Bairy KL, Sharma A, Shalini A. Evaluation of the hypoglycemic, hypolipidemic and hepatic glycogen raising effects of Syzygium malaccense upon streptozotocin induced diabetic rats. J Nat Remedies. 2005 Jan 1;5(1):46-51.
- Muller CP, Cunningham KA. Handbook of the Behavioral Neurobiology of Serotonin. Vol 31. Academic Press; 2020. p. 3-1000.
- Delgado MA, Ferreira LA, Gomes BJdS, Leite IKO, Gomez MV, Castro-Junior C. Preclinical study in a postoperative pain model to investigate the action of ketamine, lidocaine, and ascorbic acid in reversing fentanyl-induced, non–glutamatedependent hyperalgesia. PAIN Reports. 2023;8(2):e1062. doi: 10.1097/pr9.0000000000001062.
- Deuis JR, Dvorakova LS, Vetter I. Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci. 2017;10:284. doi: 10.3389/fnmol.2017.00284.
- Aring AM, Jones DE, Falko JM. Evaluation and prevention of diabetic neuropathy. Am Fam Physician. 2005;71(11):2123-8.
- Kumar A, Sharma SS. NF-kappaB inhibitory action of resveratrol: a probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem Biophys Res Commun. 2010;394(2):360-5. doi: 10.1016/j.bbrc.2010.03.014.
- Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord. 2008;9(4):301-14. doi: 10.1007/ s11154-008-9104-2.
- de Oliveira Júnior JO, Portella Junior CS, Cohen CP. Inflammatory mediators of neuropathic pain. Rev Dor. 2016;17(Suppl 1):35-42. doi: 10.5935/1806-0013.20160045.
- Duan YW, Chen SX, Li QY, Zang Y. Neuroimmune mechanisms underlying neuropathic pain: the potential role of TNF-α- necroptosis pathway. Int J Mol Sci. 2022;23(13):7191. doi: 10.3390/ijms23137191.
- Yang Y, Zhang J, Liu Y, Zheng Y, Bo J, Zhou X, et al. Role of nitric oxide synthase in the development of bone cancer pain and effect of L-NMMA. Mol Med Rep. 2016;13(2):1220-6. doi: 10.3892/mmr.2015.4647.
- Makuch W, Mika J, Rojewska E, Zychowska M, Przewlocka B. Effects of selective and non-selective inhibitors of nitric oxide synthase on morphine- and endomorphin-1-induced analgesia in acute and neuropathic pain in rats. Neuropharmacology. 2013;75:445-57. doi: 10.1016/j.neuropharm.2013.08.031.
- Kuboyama K, Tsuda M, Tsutsui M, Toyohara Y, Tozaki-Saitoh H, Shimokawa H, et al. Reduced spinal microglial activation and neuropathic pain after nerve injury in mice lacking all three nitric oxide synthases. Mol Pain. 2011;7:50. doi: 10.1186/1744-8069-7-50.
- Vareniuk I, Pacher P, Pavlov IA, Drel VR, Obrosova IG. Peripheral neuropathy in mice with neuronal nitric oxide synthase gene deficiency. Int J Mol Med. 2009;23(5):571-80. doi: 10.3892/ijmm_00000166.
- Kikuchi R, Ambe K, Kon H, Takada S, Watanabe H. Nitric oxide synthase (NOS) isoform expression after peripheral nerve transection in mice. Bull Tokyo Dent Coll. 2018;59(1):15-25. doi: 10.2209/tdcpublication.2017-0007.
- Liu Y, Croft KD, Hodgson JM, Mori T, Ward NC. Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases. Nitric Oxide. 2020;96:35-43. doi: 10.1016/j.niox.2020.01.006.
- Ahlawat A, Rana A, Goyal N, Sharma S. Potential role of nitric oxide synthase isoforms in pathophysiology of neuropathic pain. Inflammopharmacology. 2014;22(5):269-78. doi: 10.1007/s10787-014-0213-0.
- Cheng X, Zhao L, Ke T, Wang X, Cao L, Liu S, et al. Celecoxib ameliorates diabetic neuropathy by decreasing apoptosis and oxidative stress in dorsal root ganglion neurons via the miR-155/COX-2 axis. Exp Ther Med. 2021;22(2):825. doi: 10.3892/etm.2021.10257.
- Juárez-Rojop IE, Morales-Hernández PE, Tovilla-Zárate CA, Bermúdez-Ocaña DY, Torres-Lopez JE, Ble-Castillo JL, et al. Celecoxib reduces hyperalgesia and tactile allodynia in diabetic rats. Pharmacol Rep. 2015;67(3):545-52. doi: 10.1016/j.pharep.2014.12.006.
- Matsunaga A, Kawamoto M, Shiraishi S, Yasuda T, Kajiyama S, Kurita S, et al. Intrathecally administered COX-2 but not COX-1 or COX-3 inhibitors attenuate streptozotocininduced mechanical hyperalgesia in rats. Eur J Pharmacol. 2007;554(1):12-7. doi: 10.1016/j.ejphar.2006.09.072.
- Jiang SP, Zhang ZD, Kang LM, Wang QH, Zhang L, Chen HP. Celecoxib reverts oxaliplatin-induced neuropathic pain through inhibiting PI3K/Akt2 pathway in the mouse dorsal root ganglion. Exp Neurol. 2016;275 Pt 1:11-6. doi: 10.1016/j. expneurol.2015.11.001.
- Paduch R, Kandefer-Szerszeń M. Nitric oxide (NO) and cyclooxygenase-2 (COX-2) cross-talk in co-cultures of tumor spheroids with normal cells. Cancer Microenviron. 2011;4(2):187-98. doi: 10.1007/s12307-011-0063-x.
- Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993;90(15):7240-4. doi: 10.1073/ pnas.90.15.7240.
- Salvemini D, Seibert K, Masferrer JL, Misko TP, Currie MG, Needleman P. Endogenous nitric oxide enhances prostaglandin production in a model of renal inflammation. J Clin Invest. 1994;93(5):1940-7. doi: 10.1172/jci117185.
- Eligini S, Colli S, Habib A, Aldini G, Altomare A, Banfi C. Cyclooxygenase-2 glycosylation is affected by peroxynitrite in endothelial cells: impact on enzyme activity and degradation. Antioxidants (Basel). 2021;10(3):496. doi: 10.3390/ antiox10030496.