Document Type : Original Article

Authors

1 Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran

2 Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

3 Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran

4 Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran

5 Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

6 Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran

Abstract

 
 Background: Pioglitazone possesses antioxidant properties, whereas the antioxidant effects of IRAKi (an anti-inflammatory agent) remain less established. Therefore, we investigated the antioxidant properties of IRAKi and pioglitazone in the liver of obese C57BL/6J mice.
Methods: Thirty-five mice were randomly assigned to five groups (n = 7); Control, high-fat diet (HFD), HFD-IRAKi, HFD-pioglitazone (PIO), and HFD-IRAKi-PIO. After 12 weeks on an HFD, IRAKi (2 mg/kg, intraperitoneally, three times a week) and pioglitazone (10 mg/kg, orally, daily) were administered for two weeks. The expression levels of Superoxide dismutase (SOD) and glutathione peroxidase (GPx) genes were evaluated through Real-time PCR analysis. Malondialdehyde (MDA), SOD, total antioxidant status (TAS), GPx, and total oxidant status (TOS) levels were quantified.
Results: HFD increased oxidative stress. IRAKi and pioglitazone, administered separately, increased SOD and TAS while reducing MDA and TOS compared to the HFD group. However, neither treatment significantly altered GPx activity. The combination of IRAKi and pioglitazone exhibited superior antioxidant effects compared to their separate administrations. Specifically, the combined treatment improved both GPx and SOD levels as well as their gene expression.
Conclusion: Our findings demonstrate the antioxidative effects of IRAKi and pioglitazone in C57BL/6J mice. Notably, their combination produced additive effects, enhancing the antioxidant defense system in the liver. These results suggest that IRAKi and pioglitazone, when used together, may serve as a promising therapeutic approach for managing oxidative stress in liver disease. By providing a dual mechanism of action, this combination highlights its potential for broader clinical applications in chronic disease management.

Keywords

Main Subjects

  1. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373-99. doi: 10.1146/annurev. arplant.55.031903.141701.
  2. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci. 2015;16(11):26087-124. doi: 10.3390/ijms161125942.
  3. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405-10. doi: 10.1016/s1360- 1385(02)02312-9.
  4. McCord JM. The evolution of free radicals and oxidative stress. Am J Med. 2000;108(8):652-9. doi: 10.1016/s0002- 9343(00)00412-5.
  5. Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB. Resources and biological activities of natural polyphenols. Nutrients. 2014;6(12):6020-47. doi: 10.3390/nu6126020.
  6. Ore A, Akinloye OA. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease. Medicina (Kaunas). 2019;55(2):26. doi: 10.3390/medicina55020026.
  7. Tang G, Xu Y, Zhang C, Wang N, Li H, Feng Y. Green tea and epigallocatechin gallate (EGCG) for the management of nonalcoholic fatty liver diseases (NAFLD): insights into the role of oxidative stress and antioxidant mechanism. Antioxidants (Basel). 2021;10(7):1076. doi: 10.3390/antiox10071076.
  1. Borrelli A, Bonelli P, Tuccillo FM, Goldfine ID, Evans JL, Buonaguro FM, et al. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: current and innovative therapeutic approaches. Redox Biol. 2018;15:467-79. doi: 10.1016/j. redox.2018.01.009.
  2. Spahis S, Delvin E, Borys JM, Levy E. Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxid Redox Signal. 2017;26(10):519-41. doi: 10.1089/ ars.2016.6776.
  3. Li S, Hong M, Tan HY, Wang N, Feng Y. Insights into the role and interdependence of oxidative stress and inflammation in liver diseases. Oxid Med Cell Longev. 2016;2016:4234061. doi: 10.1155/2016/4234061.
  4. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114(4):842-5. doi: 10.1016/s0016- 5085(98)70599-2.
  5. Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018;2018:9547613. doi: 10.1155/2018/9547613.
  6. Serviddio G, Bellanti F, Vendemiale G. Free radical biology for medicine: learning from nonalcoholic fatty liver disease. Free Radic Biol Med. 2013;65:952-68. doi: 10.1016/j. freeradbiomed.2013.08.174.
  7. Takaki A, Kawai D, Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int J Mol Sci. 2013;14(10):20704-28. doi: 10.3390/ijms141020704.
  8. Xiao ML, Chen GD, Zeng FF, Qiu R, Shi WQ, Lin JS, et al. Higher serum carotenoids associated with improvement of non-alcoholic fatty liver disease in adults: a prospective study. Eur J Nutr. 2019;58(2):721-30. doi: 10.1007/s00394-018-1678-1.
  9. Bełtowski J, Wójcicka G, Górny D, Marciniak A. The effect of dietary-induced obesity on lipid peroxidation, antioxidant enzymes and total plasma antioxidant capacity. J Physiol Pharmacol. 2000;51(4 Pt 2):883-96.
  10. Hamedi-Shahraki S, Khademolhosseini R, Amirkhizi F. Total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in subjects with obesity: a case-control study. Int J Basic Sci Med. 2023;8(3):102-7. doi: 10.34172/ijbsm.44633.
  11. Jarukamjorn K, Jearapong N, Pimson C, Chatuphonprasert W. A high-fat, high-fructose diet induces antioxidant imbalance and increases the risk and progression of nonalcoholic fatty liver disease in mice. Scientifica (Cairo). 2016;2016:5029414. doi: 10.1155/2016/5029414.
  12. Lei Y, Yang T, Shan A, Di W, Dai M, Nan J, et al. Altered inflammatory pathway but unaffected liver fibrosis in mouse models of nonalcoholic steatohepatitis involving interleukin-1 receptor-associated kinase 1 knockout. Med Sci Monit. 2020;26:e926187. doi: 10.12659/msm.926187.
  13. Singer JW, Fleischman A, Al-Fayoumi S, Mascarenhas JO, Yu Q, Agarwal A. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget. 2018;9(70):33416-39. doi: 10.18632/oncotarget.26058.
  14. Singh N, Li L. Reduced oxidative tissue damage during endotoxemia in IRAK-1 deficient mice. Mol Immunol. 2012;50(4):244-52. doi: 10.1016/j.molimm.2012.01.011.
  15. Xu P, Zhang XG, Li YM, Yu CH, Xu L, Xu GY. Research on the protection effect of pioglitazone for non-alcoholic fatty liver disease (NAFLD) in rats. J Zhejiang Univ Sci B. 2006;7(8):627- 33. doi: 10.1631/jzus.2006.B0627.
  16. Yang H, Suh DH, Kim DH, Jung ES, Liu KH, Lee CH, et al. Metabolomic and lipidomic analysis of the effect of pioglitazone on hepatic steatosis in a rat model of obese type 2 diabetes. Br J Pharmacol. 2018;175(17):3610-25. doi: 10.1111/bph.14434.
  17. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. Br J Pharmacol. 2020;177(16):3617-24. doi: 10.1111/bph.15193.
  18. Elrashidy RA, Asker ME, Mohamed HE. Pioglitazone attenuates cardiac fibrosis and hypertrophy in a rat model of diabetic nephropathy. J Cardiovasc Pharmacol Ther. 2012;17(3):324- 33. doi: 10.1177/1074248411431581.
  19. Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C, et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell. 2013;24(1):90- 104. doi: 10.1016/j.ccr.2013.05.006.
  20. Wang CY, Liao JK. A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol. 2012;821:421-33. doi: 10.1007/978-1-61779-430-8_27.
  21. Rahimi Naiini M, Shahouzehi B, Azizi S, Shafiei B, Nazari- Robati M. Trehalose-induced SIRT1/AMPK activation regulates SREBP-1c/PPAR-α to alleviate lipid accumulation in aged liver. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(2):1061- 70. doi: 10.1007/s00210-023-02644-w.
  22. Shahouzehi B, Sepehri G, Sadeghiyan S, Masoumi-Ardakani Y. Ameliorative effects of Pistacia atlantica resin oil on experimentally-induced skin burn in rat. Res J Pharmacogn. 2019;6(1):29-34. doi: 10.22127/rjp.2018.80368.
  23. Gao Q, Luo Z, Ma S, Yu C, Shen C, Xu W, et al. Microbe-derived antioxidants alleviate liver and adipose tissue lipid disorders and metabolic inflammation induced by high fat diet in mice. Int J Mol Sci. 2023;24(4):3269. doi: 10.3390/ ijms24043269.
  24. Mohammadi A, Fallah H, Shahouzehi B, Najafipour H. miR- 33 inhibition attenuates the effect of liver X receptor agonist T0901317 on expression of liver X receptor alpha in mice liver. ARYA Atheroscler. 2017;13(6):257-63.
  25. Noeman SA, Hamooda HE, Baalash AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr. 2011;3(1):17. doi: 10.1186/1758-5996-3-17.
  26. Mendes IK, Matsuura C, Aguila MB, Daleprane JB, Martins MA, Mury WV, et al. Weight loss enhances hepatic antioxidant status in a NAFLD model induced by high-fat diet. Appl Physiol Nutr Metab. 2018;43(1):23-9. doi: 10.1139/apnm- 2017-0317.
  27. Hsiao PJ, Hsieh TJ, Kuo KK, Hung WW, Tsai KB, Yang CH, et al. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet. BMC Mol Biol. 2008;9:82. doi: 10.1186/1471-2199-9-82.
  28. Bilginoğlu A, Tutar Selçuk MF. Effect of pioglitazone on oxidative stress of skeletal muscle in the insulin resistance rat model induced by high sucrose diet. Arch Curr Med Res. 2015;3(3):241-6. doi: 10.47482/acmr.1084437.
  29. Al-Muzafar HM, Alshehri FS, Amin KA. The role of pioglitazone in antioxidant, anti-inflammatory, and insulin sensitivity in a high fat-carbohydrate diet-induced rat model of insulin resistance. Braz J Med Biol Res. 2021;54(8):e10782. doi: 10.1590/1414-431X2020e10782.
  30. Maitra U, Singh N, Gan L, Ringwood L, Li L. IRAK-1 contributes to lipopolysaccharide-induced reactive oxygen species generation in macrophages by inducing NOX-1 transcription and Rac1 activation and suppressing the expression of antioxidative enzymes. J Biol Chem. 2009;284(51):35403-11. doi: 10.1074/jbc.M109.059501.