Document Type : Original Article

Authors

1 Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

2 Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

Abstract

 Background: Type 1 diabetes (T1D) affects a variety of pathways that can contribute to diabetic neuropathy, such as oxidative stress, neuroinflammation, and autophagy. One neurogenesis factor that is thought to play a part in memory and Alzheimer’s disease is the brain-derived neurotrophic factor (BDNF). The current study sought to evaluate the effects of Citrullus colocynthis seeds on lipid profiles, oxidative status, BDNF level, glycemic control, and antioxidant defenses in rats with T1D mellitus.
Methods: Forty-two male Wistar rats (3–4 months of age and 200–250 g in weight) were evaluated. The rats were randomly assigned to three groups: control, diabetes, and diabetes + drug. The extract of C. colocynthis was given to the diabetic rats by gavage. The tests for oxidants and antioxidants included malondialdehyde (MDA), total antioxidant capacity (TAC), paraoxonase1 (PON1), nitric oxide (NO), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and protein carbonyl (PC). The status of the lipid profile was measured by evaluating high-density lipoprotein (HDL), cholesterol, low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL). The ELISA technique was used to measure hippocampal BDNF. The student’s and paired t tests and one-way ANOVA were conducted using SPSS software version 22 for data analysis.
Results: Citrullus colocynthis prescription in the diabetes + drug group significantly decreased PC (P < 0.05), MDA (P < 0.05), and NO (P < 0.05). It also elevated SOD (P < 0.001), GPx (P < 0.001), CAT (P < 0.05), and PON1 (P < 0.05) activities and TAC (P < 0.001), BDNF (P < 0.001), and insulin levels (P < 0.001). Improved lipid profile, HOMA-IR (P < 0.001), HOMA-Β (P < 0.01), and QUICKI (P < 0.001) were observed compared to the diabetes group.
Conclusion: This research revealed that administering 200 mg/kg C. colocynthis once daily for 40 days can enhance the BDNF levels in the hippocampus, lessen metabolic problems and oxidative stress, and increase antioxidant defenses.

Keywords

Main Subjects

  1. Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med. 2020;14(5):583-600. doi: 10.1007/s11684-019-0729-1.
  2. dos Santos JM, Tewari S, Mendes RH. The role of oxidative stress in the development of diabetes mellitus and its complications. J Diabetes Res. 2019;2019:4189813. doi: 10.1155/2019/4189813.
  3. Liu C, Mathews CE, Chen J. Oxidative stress and type 1 diabetes. In: Armstrong D, Stratton RD, eds. Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease. John Wiley & Sons; 2016. p. 319-28. doi: 10.1002/9781118832431.ch19.
  4. Han R, Liu Z, Sun N, Liu S, Li L, Shen Y, et al. BDNF alleviates neuroinflammation in the hippocampus of type 1 diabetic mice via blocking the aberrant HMGB1/RAGE/NF-κB pathway. Aging Dis. 2019;10(3):611-25. doi: 10.14336/ad.2018.0707.
  5. Asadikaram G, Ram M, Izadi A, Sheikh Fathollahi M, Nematollahi MH, Najafipour H, et al. The study of the serum level of IL-4, TGF-β, IFN-γ, and IL-6 in overweight patients with and without diabetes mellitus and hypertension. J Cell Biochem. 2019;120(3):4147-57. doi: 10.1002/jcb.27700.
  6. Delmastro MM, Piganelli JD. Oxidative stress and redox modulation potential in type 1 diabetes. Clin Dev Immunol. 2011;2011:593863. doi: 10.1155/2011/593863.
  7. Francescato MP, Stel G, Geat M, Cauci S. Oxidative stress in patients with type 1 diabetes mellitus: is it affected by a single bout of prolonged exercise? PLoS One. 2014;9(6):e99062. doi: 10.1371/journal.pone.0099062.
  8. Sheikhpour R. Diabetes and oxidative stress: the mechanism and action. Iran J Diabetes Obes. 2013;5(1):40-5.
  9. Maxwell SR, Thomason H, Sandler D, Leguen C, Baxter MA, Thorpe GH, et al. Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. Eur J Clin Invest. 1997;27(6):484-90. doi: 10.1046/j.1365-2362.1997.1390687.x.
  10. Rocić B, Vucić M, Knezević-Cuća J, Radica A, Pavlić-Renar I, Profozić V, et al. Total plasma antioxidants in first-degree relatives of patients with insulin-dependent diabetes. Exp Clin Endocrinol Diabetes. 1997;105(4):213-7. doi: 10.1055/s- 0029-1211754.
  11. Grabia M, Socha K, Soroczyńska J, Bossowski A, Markiewicz-Żukowska R. Determinants related to oxidative stress parameters in pediatric patients with type 1 diabetes mellitus. Nutrients. 2023;15(9):2084. doi: 10.3390/nu15092084.
  12. Bastin A, Sadeghi A, Nematollahi MH, Abolhassani M, Mohammadi A, Akbari H. The effects of malvidin on oxidative stress parameters and inflammatory cytokines in LPS-induced human THP-1 cells. J Cell Physiol. 2021;236(4):2790-9. doi: 10.1002/jcp.30049.
  13. Ling H, Zhu Z, Yang J, He J, Yang S, Wu D, et al. Dihydromyricetin improves type 2 diabetes-induced cognitive impairment via suppressing oxidative stress and enhancing brain-derived neurotrophic factor-mediated neuroprotection in mice. Acta Biochim Biophys Sin (Shanghai). 2018;50(3):298-306. doi: 10.1093/abbs/gmy003.
  14. Zhang S, Xue R, Hu R. The neuroprotective effect and action mechanism of polyphenols in diabetes mellitus-related cognitive dysfunction. Eur J Nutr. 2020;59(4):1295-311. doi: 10.1007/s00394-019-02078-2.
  15. Fulgenzi G, Hong Z, Tomassoni-Ardori F, Barella LF, Becker J, Barrick C, et al. Novel metabolic role for BDNF in pancreatic β-cell insulin secretion. Nat Commun. 2020;11(1):1950. doi: 10.1038/s41467-020-15833-5.
  16. Chen HJ, Lee YJ, Huang CC, Lin YF, Li ST. Serum brain-derived neurotrophic factor and neurocognitive function in children with type 1 diabetes. J Formos Med Assoc. 2021;120(1 Pt 1):157-64. doi: 10.1016/j.jfma.2020.04.011.
  17. Kalva S, Fatima N, Samreen S. Insulinomimetic effect of Citrullus colocynthis Roots in STZ challenged rat model: insulinomimetic effect of Citrullus colocynthis roots. Iran J Pharm Sci. 2018;14(3):49-66. doi: 10.22037/ijps.v14.40638.
  18. Abd El-Baky AE, Amin HK. Effect of Citrullus colocynthis in ameliorate the oxidative stress and nephropathy in diabetic experimental rats. Int J Pharm Stud Res. 2011;2(2):1-10.
  19. Olatunya AM, Omojola A, Akinpelu K, Akintayo ET. Vitamin E, phospholipid, and phytosterol contents of Parkia biglobosa and Citrullus colocynthis seeds and their potential applications to human health. Prev Nutr Food Sci. 2019;24(3):338-43. doi: 10.3746/pnf.2019.24.3.338.
  20. Kumar S, Kumar D, Manjusha, Saroha K, Singh N, Vashishta B. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta Pharm. 2008;58(2):215-20. doi: 10.2478/v10007-008-0008-1.
  21. Li QY, Munawar M, Saeed M, Shen JQ, Khan MS, Noreen S, et al. Citrullus colocynthis (L.) Schrad (bitter apple fruit): promising traditional uses, pharmacological effects, aspects, and potential applications. Front Pharmacol. 2021;12:791049. doi: 10.3389/fphar.2021.791049.
  22. Afshari A, Salimi F, Nowrouzi A, Babaie Khalili M, Bakhtiyari S, Hassanzadeh G, et al. Differential expression of gluconeogenic enzymes in early- and late-stage diabetes: the effect of Citrullus colocynthis (L.) Schrad. seed extract on hyperglycemia and hyperlipidemia in Wistar-Albino rats model. Clin Phytosci. 2021;7(1):88. doi: 10.1186/s40816- 021-00324-x.
  23. Rajizadeh MA, Aminizadeh AH, Esmaeilpour K, Bejeshk MA, Sadeghi A, Salimi F. Investigating the effects of Citrullus colocynthis on cognitive performance and anxiety-like behaviors in STZ-induced diabetic rats. Int J Neurosci. 2023;133(4):343-55. doi: 10.1080/00207454.2021.1916743 .
  24. Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M. Hypolipidemic and Hepatoprotective Effects of Myricitrin and Solid Lipid Nanoparticle-containing Myricitrin on the Male Mouse Model with Type 2 Diabetes Induced by Streptozotocin-Nicotinamide. Journal of Kerman University of Medical Sciences. 2021;28(1):32-42. doi: 10.22062/ jkmu.2021.91562.
  25. Bobin-Dubigeon C, Jaffré I, Joalland MP, Classe JM, Campone M, Hervé M, et al. Paraoxonase 1 (PON1) as a marker of short-term death in breast cancer recurrence. Clin Biochem. 2012;45(16-17):1503-5. doi: 10.1016/j. clinbiochem.2012.05.021.
  26. Abbasi-Jorjandi M, Asadikaram G, Abolhassani M, Fallah H, Abdollahdokht D, Salimi F, et al. Pesticide exposure and related health problems among family members of farmworkers in southeast Iran. A case-control study. Environ Pollut. 2020;267:115424. doi: 10.1016/j.envpol.2020.115424.
  27. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70-6. doi: 10.1006/abio.1996.0292.
  28. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469-74. doi: 10.1111/j.1432-1033.1974.tb03714.x.
  29. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158-69.
  30. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389-94. doi: 10.1016/0003-2697(72)90132-7.
  31. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464-78. doi: 10.1016/0076-6879(90)86141-h.
  32. Yucel AA, Gulen S, Dincer S, Yucel AE, Yetkin GI. Comparison of two different applications of the Griess method for nitric oxide measurement. J Exp Integr Med. 2012;2(1):167-71. doi: 10.5455/jeim.200312.or.024.
  33. Azizian H, Khaksari M, Asadi Karam G, Esmailidehaj M, Farhadi Z. Cardioprotective and anti-inflammatory effects of G-protein coupled receptor 30 (GPR30) on postmenopausal type 2 diabetic rats. Biomed Pharmacother. 2018;108:153-64. doi: 10.1016/j.biopha.2018.09.028.
  34. Hunt JV, Dean RT, Wolff SP. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J. 1988;256(1):205-12. doi: 10.1042/bj2560205.
  35. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89-96.
  36. Lipinski B. Pathophysiology of oxidative stress in diabetes mellitus. J Diabetes Complications. 2001;15(4):203-10. doi: 10.1016/s1056-8727(01)00143-x.
  37. Dabir Vaziri N, Dicus M, Ho ND, Boroujerdi-Rad L, Sindhu RK. Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney Int. 2003;63(1):179-85. doi: 10.1046/j.1523-1755.2003.00702.x.
  38. Singh R, Bhardwaj P, Sharma P. Antioxidant and toxicological evaluation of Cassia sopherain streptozotocin-induced diabetic Wistar rats. Pharmacognosy Res. 2013;5(4):225-32. doi: 10.4103/0974-8490.118767.
  39. Samie A, Sedaghat R, Baluchnejadmojarad T, Roghani M. Hesperetin, a citrus flavonoid, attenuates testicular damage in diabetic rats via inhibition of oxidative stress, inflammation, and apoptosis. Life Sci. 2018;210:132-9. doi: 10.1016/j. lfs.2018.08.074.
  40. Amjadi A, Mirmiranpour H, Sobhani SO, Moazami Goudarzi N. Intravenous laser wavelength radiation effect on LCAT, PON1, catalase, and FRAP in diabetic rats. Lasers Med Sci. 2020;35(1):131-8. doi: 10.1007/s10103-019-02805-5.
  41. Al Hroob AM, Abukhalil MH, Alghonmeen RD, Mahmoud AM. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy. Biomed Pharmacother. 2018;106:381- 9. doi: 10.1016/j.biopha.2018.06.148.
  42. Bejeshk MA, Bagheri F, Salimi F, Rajizadeh MA. The diabetic lung can be ameliorated by Citrullus colocynthis by reducing inflammation and oxidative stress in rats with type 1 diabetes. Evid Based Complement Alternat Med. 2023;2023:5176645. doi: 10.1155/2023/5176645.
  43. Abbas AO, Alaqil AA, Kamel NN, Moustafa ES. Citrullus colocynthis seed ameliorates layer performance and immune response under acute oxidative stress induced by paraquat injection. Animals (Basel). 2022;12(8):945. doi: 10.3390/ ani12080945.
  44. Soliman AM, Mohamed AS, Marie MA. Effect of echinochrome on body weight, musculoskeletal system and lipid profile of male diabetic rats. Austin J Endocrinol Diabetes. 2016;3(2):1045.
  45. Fouzi M, Razmi N, Mehrabani D. The effect of Citrullus colocynthis on serum lipid profile and hepatic histology in CCl4-induced liver injury rat model. Int J Nutr Sci. 2020;5(4):208-13. doi: 10.30476/ijns.2020.88244.1094.
  46. Niemczyk S, Szamotulska K, Giers K, Jasik M, Bartoszewicz Z, Romejko-Ciepielewska K, et al. Homeostatic model assessment indices in evaluation of insulin resistance and secretion in hemodialysis patients. Med Sci Monit. 2013;19:592-8. doi: 10.12659/msm.883978.
  47. Meo SA, Al Rubeaan K. Effects of exposure to electromagnetic field radiation (EMFR) generated by activated mobile phones on fasting blood glucose. Int J Occup Med Environ Health. 2013;26(2):235-41. doi: 10.2478/s13382-013-0107-1.
  48. Ahangarpour A, Belali R, Bineshfar F, Javadzadeh S, Yazdanpanah L. Evaluation of skin absorption of the Citrullus colocynthis in treatment of type II diabetic patients. J Diabetes Metab Disord. 2020;19(1):305-9. doi: 10.1007/s40200-020- 00509-0.
  49. Rozanska O, Uruska A, Zozulinska-Ziolkiewicz D. Brain-derived neurotrophic factor and diabetes. Int J Mol Sci. 2020;21(3):841. doi: 10.3390/ijms21030841.
  50. Rajamanickam E, Gurudeeban S, Ramanathan T, Satyavani K. Evaluation of anti-inflammatory activity of Citrullus colocynthis. Int J Curr Res. 2010;2(1):67-9.
  51. Etemad A, Sheikhzadeh F, Ahmadi Asl N. Evaluation of brain-derived neurotrophic factor in diabetic rats. Neurol Res. 2015;37(3):217-22. doi: 10.1179/1743132814y.0000000428.
  52. Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, et al. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus. 2009;19(10):951-61. doi: 10.1002/hipo.20577.