Document Type : Original Article

Authors

1 Department of Parasitology, Medical Faculty, Zabol University of Medical Sciences, Zabol, Iran

2 Bacteriology & Virology Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

Abstract

 Background: Hymenolepis nana, the dwarf tapeworm, is the most prevalent human cestode, particularly affecting children in developing countries with poor sanitation. This study used mitochondrial DNA sequencing techniques to investigate the molecular characteristics and genetic diversity of H. nana isolates from human fecal samples in Zabol, Iran.
Methods: In this descriptive cross-sectional study, 374 stool samples were examined using microscopy for H. nana infection. DNA was extracted from microscopically positive samples, and the rrnS-mtDNA(rrnS) gene was amplified using specific primers. PCR products were sequenced and compared to reference sequences in GenBank. Phylogenetic analysis was performed to assess genetic relationships among isolates.
Results: The prevalence of H. nana infection was 3.74% (95% CI: 2.07-6.19%). Seven out of 14 positive samples were successfully sequenced. The rrnS-mtDNA sequences from Zabol isolates showed 99% identity to the reference strain. Phylogenetic analysis revealed high similarity ( > 98%) with H. nana sequences from diverse geographical regions. However, distinct nucleotide polymorphisms were observed, indicating regional genetic variations.
Conclusion: This study provides novel insights into the genetic diversity of H. nana in southeast Iran. The observed variations in the mitochondrial genome suggest potential adaptations to local environments or hosts. These findings contribute to our understanding of H. nana epidemiology and may inform the development of targeted molecular diagnostics and control strategies for this widespread cestodiasis.

Keywords

Main Subjects

  1. Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol. 2017;33(3):300-5. doi: 10.4103/joacp. JOACP_349_15.
  2. Ito A, Budke CM. Perspectives on intestinal tapeworm infections: an evaluation of direct and indirect life-cycles with a special emphasis on species of Hymenolepis. Curr Res Parasitol Vector Borne Dis. 2021;1:100023. doi: 10.1016/j. crpvbd.2021.100023.
  3. Goudarzi F, Mohtasebi S, Teimouri A, Yimam Y, Heydarian P, Salehi Sangani G, et al. A systematic review and meta-analysis of Hymenolepis nana in human and rodent hosts in Iran: a remaining public health concern. Comp Immunol Microbiol Infect Dis. 2021;74:101580. doi: 10.1016/j. cimid.2020.101580.
  4. Blecharz-Klin K, Świerczyńska M, Piechal A, Wawer A, Joniec-Maciejak I, Pyrzanowska J, et al. Infection with intestinal helminth (Hymenolepis diminuta) impacts exploratory behavior and cognitive processes in rats by changing the central level of neurotransmitters. PLoS Pathog. 2022;18(3):e1010330. doi: 10.1371/journal.ppat.1010330.
  5. Sharma S, Lyngdoh D, Roy B, Tandon V. Differential diagnosis and molecular characterization of Hymenolepis nana and Hymenolepis diminuta (Cestoda: Cyclophyllidea: Hymenolepididae) based on nuclear rDNA ITS2 gene marker. Parasitol Res. 2016;115(11):4293-8. doi: 10.1007/s00436- 016-5210-3.
  6. Le TH, Blair D, McManus DP. Mitochondrial genomes of human helminths and their use as markers in population genetics and phylogeny. Acta Trop. 2000;77(3):243-56. doi: 10.1016/s0001-706x(00)00157-1.
  7. Bamarni SS, Ben Said M. Genomic approaches in parasitic diagnosis. In: Omics Approaches in Veterinary Parasitology. CRC Press; 2024. p. 47-61.
  8. Cheng T, Liu GH, Song HQ, Lin RQ, Zhu XQ. The complete mitochondrial genome of the dwarf tapeworm Hymenolepis nana--a neglected zoonotic helminth. Parasitol Res. 2016;115(3):1253-62. doi: 10.1007/s00436-015-4862-8.
  9. Sokolow SH, Nova N, Jones IJ, Wood CL, Lafferty KD, Garchitorena A, et al. Ecological and socioeconomic factors associated with the human burden of environmentally mediated pathogens: a global analysis. Lancet Planet Health. 2022;6(11):e870-e9. doi: 10.1016/s2542-5196(22)00248-0.
  10. Macnish MG, Ryan UM, Behnke JM, Thompson RC. Detection of the rodent tapeworm Rodentolepis ( = Hymenolepis) microstoma in humans. A new zoonosis? Int J Parasitol. 2003;33(10):1079-85. doi: 10.1016/s0020-7519(03)00137-1.
  11. Zarowiecki M, Berriman M. What helminth genomes have taught us about parasite evolution. Parasitology. 2015;142 Suppl 1:S85-97. doi: 10.1017/s0031182014001449.
  12. Yang D, Zhao W, Zhang Y, Liu A. Prevalence of Hymenolepis nana and H. diminuta from brown rats (Rattus norvegicus) in Heilongjiang province, China. Korean J Parasitol. 2017;55(3):351-5. doi: 10.3347/kjp.2017.55.3.351.
  13. Shahnazi M, Zarezadeh Mehrizi M, Alizadeh SA, Heydarian P, Saraei M, Alipour M, et al. Molecular characterization of Hymenolepis nana based on nuclear rDNA ITS2 gene marker. Afr Health Sci. 2019;19(1):1346-52. doi: 10.4314/ahs.v19i1.6.
  14. Hatam-Nahavandi K, Rezaeian M, Ahmadpour E, Narouiepour A, Anvari D. Prevalence of Hymenolepis nana among individuals referred to health centers in Iranshahr, southeastern Iran (2020-2021). J Mazandaran Univ Med Sci. 2024;34(240):83-96. [Persian].
  15. Cabada MM, Morales ML, Lopez M, Reynolds ST, Vilchez EC, Lescano AG, et al. Hymenolepis nana impact among children in the highlands of Cusco, Peru: an emerging neglected parasite infection. Am J Trop Med Hyg. 2016;95(5):1031-6. doi: 10.4269/ajtmh.16-0237.
  16. Tefera E, Mohammed J, Mitiku H. Intestinal helminthic infections among elementary students of Babile town, eastern Ethiopia. Pan Afr Med J. 2015;20:50. doi: 10.11604/ pamj.2015.20.50.5251.
  17. Vilchez Barreto PM, Gamboa R, Santivañez S, O’Neal SE, Muro C, Lescano AG, et al. Prevalence, age profile, and associated risk factors for Hymenolepis nana infection in a large population-based study in northern Peru. Am J Trop Med Hyg. 2017;97(2):583-6. doi: 10.4269/ajtmh.16-0939.
  18. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006;367(9521):1521- 32. doi: 10.1016/s0140-6736(06)68653-4.
  19. Avise JC. Phylogeography: The History and Formation of Species. Harvard University Press; 2000.
  20. Criscione CD, Poulin R, Blouin MS. Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol. 2005;14(8):2247-57. doi: 10.1111/j.1365- 294X.2005.02587.x.
  21. Cable J, Barber I, Boag B, Ellison AR, Morgan ER, Murray K, et al. Global change, parasite transmission and disease control: lessons from ecology. Philos Trans R Soc Lond B Biol Sci. 2017;372(1719):20160088. doi: 10.1098/rstb.2016.0088.
  22. Tenaillon O, Rodríguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, et al. The molecular diversity of adaptive convergence. Science.