Document Type : Original Article

Authors

1 Department of Pharmacognosy & Pharmaceutical Biotechnology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

2 Department of Toxicology & Pharmacology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

3 Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

Abstract

 Background: One of the most prevalent forms of liver cancer globally is the hepatocellular carcinoma (HCC). Increasing evidence from both clinical settings and experimental studies indicates that cyclooxygenase (COX) enzymes could play a role in the formation of different types of cancer, including HCC. Deuterium-enriched water (DEW) and deuterium-depleted water (DDW) are involved in both the treatment and prevention of cancer. Employing a blend of COX inhibitors in conjunction with DDW/DEW might serve as a promising strategy to enhance the efficacy of both therapies in HCC.
Methods: The cytotoxicity of celecoxib and indomethacin, examined both individually and in combination with DDW and DEW, was assessed. To explore their antiproliferative effects, Hep G2 cells were treated with the drugs and various concentrations of deuterium in the forms of DDW or DEW, while cell viability was evaluated through the MTT assay. Furthermore, the levels of COX-2, MAPK pathway proteins, the anti-apoptotic protein Bcl2, the pro-apoptotic protein Bax, and the activity of caspase-3 were investigated using SDS-polyacrylamide gel (SDS-PAGE) and western blot techniques.
Results: The simultaneous administration of indomethacin or celecoxib alongside DEW significantly improved the cytotoxic effects and induced apoptosis in Hep G2 cells. The combination of DEWs with celecoxib or indomethacin enhanced the antiproliferative impact of the drug by about 20%–60% and 15%–45%, respectively. This improvement was linked to the activation of p38 and JNK MAPKs, along with a reduction in the pro-survival proteins Bcl-2, COX-2, and ERK1/2. Additionally, the simultaneous treatment led to the activation of caspase-3, an important mediator of apoptosis, and suppressed poly ADP-ribose polymerase (PARP).
Conclusion: The pairing of DEW with NSAIDs can influence the primary cellular signaling pathways, acting as a tactic in cancer chemotherapy.

Keywords

Main Subjects

  1. Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152(4):745-61. doi: 10.1053/j. gastro.2016.11.048.
  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660.
  3. Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 2020;1873(1):188314. doi: 10.1016/j.bbcan.2019.188314.
  1. Refolo MG, Messa C, Guerra V, Carr BI, D’Alessandro R. Inflammatory mechanisms of HCC development. Cancers (Basel). 2020;12(3):641. doi: 10.3390/cancers12030641.
  2. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: a review. J Cell Physiol. 2019;234(5):5683-99. doi: 10.1002/jcp.27411.
  3. Wong RS. Role of nonsteroidal anti-inflammatory drugs (NSAIDs) in cancer prevention and cancer promotion. Adv Pharmacol Sci. 2019;2019:3418975. doi: 10.1155/2019/3418975.
  4. Husain SS, Szabo IL, Pai R, Soreghan B, Jones MK, Tarnawski AS. MAPK (ERK2) kinase--a key target for NSAIDs-induced inhibition of gastric cancer cell proliferation and growth. Life Sci. 2001;69(25-26):3045-54. doi: 10.1016/s0024- 3205(01)01411-4.
  5. Porebska I, Wyrodek E, Kosacka M, Adamiak J, Jankowska R, Harłozińska-Szmyrka A. Apoptotic markers p53, Bcl-2 and Bax in primary lung cancer. In Vivo. 2006;20(5):599-604.
  6. Hossain MA, Kim DH, Jang JY, Kang YJ, Yoon JH, Moon JO, et al. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model. Int J Oncol. 2012;40(4):1298-304. doi: 10.3892/ijo.2011.1304.
  7. Rayburn ER, Ezell SJ, Zhang R. Anti-inflammatory agents for cancer therapy. Mol Cell Pharmacol. 2009;1(1):29-43. doi: 10.4255/mcpharmacol.09.05.
  8. Narayan RS, Molenaar P, Teng J, Cornelissen FM, Roelofs I, Menezes R, et al. A cancer drug atlas enables synergistic targeting of independent drug vulnerabilities. Nat Commun. 2020;11(1):2935. doi: 10.1038/s41467-020-16735-2.
  9. Boros LG, Somlyai I, Kovács BZ, Puskás LG, Nagy LI, Dux L, et al. Deuterium depletion inhibits cell proliferation, RNA and nuclear membrane turnover to enhance survival in pancreatic cancer. Cancer Control. 2021;28:1073274821999655. doi: 10.1177/1073274821999655.
  10. Goncharuk VV, Kavitskaya AA, Romanyukina IY, Loboda OA. Revealing water’s secrets: deuterium depleted water. Chem Cent J. 2013;7(1):103. doi: 10.1186/1752-153x-7-103.
  11. Syroeshkin A, Pleteneva T, Uspenskaya E, Zlatskiy I, Antipova N, Grebennikova T, et al. D/H control of chemical kinetics in water solutions under low deuterium concentrations. Chem Eng J. 2019;377:119827. doi: 10.1016/j.cej.2018.08.213.
  12. Krempels K, Somlyai I, Somlyai G. Molecular and clinical effects of deuterium depleted water in treatment and prevention of cancer. Positive Health Online. 2013(203).
  13. Goncharuk VV, Syroeshkin AV, Zlatskiy IA, Uspenskaya EV, Orekhova AV, Levitskaya OV, et al. Quasichemical description of the cell death kinetics of cellular biosensor Spirostomum ambigua for testing the biological activity of aqueous solutions. J Water Chem Technol. 2017;39(2):97- 102. doi: 10.3103/s1063455x17020072.
  14. Cree IA. Principles of cancer cell culture. Methods Mol Biol. 2011;731:13-26. doi: 10.1007/978-1-61779-080-5_2.
  15. Kurien BT, Scofield RH. Western Blotting: Methods and Protocols. New York: Springer; 2015.
  16. Abdallah FM, Helmy MW, Katary MA, Ghoneim AI. Synergistic antiproliferative effects of curcumin and celecoxib in hepatocellular carcinoma HepG2 cells. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(12):1399-410. doi: 10.1007/s00210-018-1557-6.
  17. Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B. Role of BAX in the apoptotic response to anticancer agents. Science. 2000;290(5493):989-92. doi: 10.1126/science.290.5493.989.
  18. Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem. 1999;274(29):20049-52. doi: 10.1074/jbc.274.29.20049.
  19. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279-90. doi: 10.1038/sj.onc.1210421.
  20. Yue J, López JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 2020;21(7):2346. doi: 10.3390/ ijms21072346.
  21. Ho PH, Teng W, Lin CC, Jeng WJ, Chen WT, Lin CY, et al. Prolonged post-ablation fever may predict one-year tumor recurrence in hepatocellular carcinoma after radiofrequency ablation. Int J Hyperthermia. 2020;37(1):1008-15. doi: 10.1080/02656736.2020.1806363.
  22. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30(3):377-86. doi: 10.1093/carcin/bgp014.
  23. Poligone B, Baldwin AS. Positive and negative regulation of NF-kappaB by COX-2: roles of different prostaglandins. J Biol Chem. 2001;276(42):38658-64. doi: 10.1074/jbc. M106599200.
  24. Chen G, Li X, Yang J, Li J, Wang X, He J, et al. Prognostic significance of cyclooxygenase-2 expression in patients with hepatocellular carcinoma: a meta-analysis. Arch Med Sci. 2016;12(5):1110-7. doi: 10.5114/aoms.2016.61916.
  25. Dong X, Li R, Xiu P, Dong X, Xu Z, Zhai B, et al. Meloxicam executes its antitumor effects against hepatocellular carcinoma in COX-2- dependent and-independent pathways. PLoS One. 2014;9(3):e92864. doi: 10.1371/journal.pone.0092864.
  26. Hardwick JM, Soane L. Multiple functions of Bcl-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5(2):a008722. doi: 10.1101/cshperspect.a008722.
  27. Yoshinaka R, Shibata MA, Morimoto J, Tanigawa N, Otsuki Y. COX-2 inhibitor celecoxib suppresses tumor growth and lung metastasis of a murine mammary cancer. Anticancer Res. 2006;26(6b):4245-54.
  28. Cusimano A, Foderà D, D’Alessandro N, Lampiasi N, Azzolina A, Montalto G, et al. Potentiation of the antitumor effects of both selective cyclooxygenase-1 and cyclooxygenase-2 inhibitors in human hepatic cancer cells by inhibition of the MEK/ERK pathway. Cancer Biol Ther. 2007;6(9):1461-8. doi: 10.4161/cbt.6.9.4629.
  29. Jia Z, Zhang H, Ma C, Li N, Wang M. Celecoxib enhances apoptosis of the liver cancer cells via regulating ERK/JNK/P38 pathway. J BUON. 2021;26(3):875-81.
  30. Park SW, Kim HS, Hah JW, Jeong WJ, Kim KH, Sung MW. Celecoxib inhibits cell proliferation through the activation of ERK and p38 MAPK in head and neck squamous cell carcinoma cell lines. Anticancer Drugs. 2010;21(9):823-30. doi: 10.1097/CAD.0b013e32833dada8.
  31. Soleyman-Jahi S, Zendehdel K, Akbarzadeh K, Haddadi M, Amanpour S, Muhammadnejad S. In vitro assessment of antineoplastic effects of deuterium depleted water. Asian Pac J Cancer Prev. 2014;15(5):2179-83. doi: 10.7314/ apjcp.2014.15.5.2179.
  32. Wang H, Zhu B, Liu C, Fang W, Yang H. [Deuterium-depleted water selectively inhibits nasopharyngeal carcinoma cell proliferation in vitro]. Nan Fang Yi Ke Da Xue Xue Bao. 2012;32(10):1394-9. [Chinese].
  33. Kleemann J, Reichenbach G, Zöller N, Jäger M, Kaufmann R, Meissner M, et al. Heavy water affects vital parameters of human melanoma cells in vitro. Cancer Manag Res. 2020;12:1199-209. doi: 10.2147/cmar.S230985.
  34. Hassanzadeh A, Mandegary A, Sharif E, Rasooli R, Mohammadnejad R, Masoumi-Ardekani Y. Cyclooxygenase inhibitors combined with deuterium-enriched water augment

cytotoxicity in A549 lung cancer cell line via activation of apoptosis and MAPK pathways. Iran J Basic Med Sci. 2018;21(5):508-16. doi: 10.22038/ijbms.2018.25366.6269.

  1. Gyöngyi Z, Budán F, Szabó I, Ember I, Kiss I, Krempels K, et al. Deuterium depleted water effects on survival of lung cancer patients and expression of Kras, Bcl2, and Myc genes in mouse lung. Nutr Cancer. 2013;65(2):240-6. doi: 10.1080/01635581.2013.756533.
  2. Salomonsson L, Brändén G, Brzezinski P. Deuterium isotope effect of proton pumping in cytochrome c oxidase. Biochim Biophys Acta. 2008;1777(4):343-50. doi: 10.1016/j. bbabio.2007.09.009.
  3. Olgun A. Biological effects of deuteronation: ATP synthase as an example. Theor Biol Med Model. 2007;4:9. doi: 10.1186/1742-4682-4-9.
  4. Mandegary A, Sharif E, Rasooli R, Hassanzadeh A. The effect of deuterium depleted/enriched water on the growth of A549 and HepG2 cell lines. J Kerman Univ Med Sci. 2019;26(5):357- 67. doi: 10.22062/jkmu.2019.89543.
  5. Leonard PJ, Mullins JM. D2O induced alterations of mitosis in PtK1 cells. Exp Cell Res. 1987;172(1):204-11. doi: 10.1016/0014-4827(87)90106-6.
  6. Bader Y, Hartmann J, Horvath Z, Saiko P, Grusch M, Madlener S, et al. Synergistic effects of deuterium oxide and gemcitabine in human pancreatic cancer cell lines. Cancer Lett. 2008;259(2):231-9. doi: 10.1016/j.canlet.2007.10.010.
  7. Kalkur RS, Ballast AC, Triplett AR, Spendier K. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells. PeerJ. 2014;2:e553. doi: 10.7717/peerj.553.
  8. Uemura T, Moritake K, Akiyama Y, Kimura Y, Shingu T, Yamasaki T. Experimental validation of deuterium oxide-mediated antitumoral activity as it relates to apoptosis in murine malignant astrocytoma cells. J Neurosurg. 2002;96(5):900-8. doi: 10.3171/jns.2002.96.5.0900.
  9. Bahk JY, Lee JH, Chung HS, Lee HY, Chung BC, Park MS, et ak. Anticancer effect of deuterium oxide on a bladder cancer cell related to Bcl-2 and Bax. J Ind Eng Chem. 2007;13(4):501- 7.
  10. Schroeder CP, Kadara H, Lotan D, Woo JK, Lee HY, Hong WK, et al. Involvement of mitochondrial and Akt signaling pathways in augmented apoptosis induced by a combination of low doses of celecoxib and N-(4-hydroxyphenyl) retinamide in premalignant human bronchial epithelial cells. Cancer Res. 2006;66(19):9762-70. doi: 10.1158/0008-5472.Can-05- 4124.