Document Type : Original Article
Authors
1 Department of Sports Physiology, Faculty of Sports Sciences, Arak University, Arak, Iran
2 Research Institute for Applied Studies in Sports Sciences, Arak University, Arak, Iran
3 Department of Sport Sciences, Faculty of Psychology and Educational Sciences, Yazd University, Yazd, Iran
Abstract
Background: Research has demonstrated a negative association between type 2 diabetes mellitus (T2DM) and male gonadal function, with reductions observed in serum levels of testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Conversely, resistance training and chromium picolinate supplementation in healthy men have been shown to influence these hormones positively. This study aimed to investigate the effects of resistance training and chromium picolinate supplementation on glycemic control and hormonal profiles in men with type 2 diabetes.
Methods: Twenty-five men with type 2 diabetes were enrolled and randomly assigned to three groups: resistance training with chromium picolinate (n = 9), resistance training with placebo (n = 8), and control (n = 8). The training groups participated in an 8-week supervised training program targeting major muscle groups. Blood samples were collected pre- and post-intervention to measure blood glucose, testosterone, LH, and FSH. A mixed ANOVA (group × time; α = 0.05) was used for data analysis using SPSS version 26.
Results: The resistance training and resistance training with chromium picolinate groups showed a significant decrease (P < 0.05) in blood glucose and an increase in testosterone, LH, and FSH levels compared to controls and baseline. No significant differences were observed between training groups (P > 0.05).
Conclusion: The combined application of resistance training and chromium picolinate supplementation in individuals with type 2 diabetes may offer a potential strategy for ameliorating glycemic dysfunction while mitigating potential adverse hormonal effects.
Keywords
- Chromium picolinate
- Resistance training
- Diabetes
- Testosterone
- Follicle-stimulating hormone
- Luteinizing hormone
Main Subjects
- Hossain MJ, Al-Mamun M, Islam MR. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci Rep. 2024;7(3):e2004. doi: 10.1002/hsr2.2004.
- Yang X, Sun J, Zhang W. Global trends in burden of type 2 diabetes attributable to physical inactivity across 204 countries and territories, 1990-2019. Front Endocrinol (Lausanne). 2024;15:1343002. doi: 10.3389/fendo.2024.1343002.
- Kuate Defo A, Bakula V, Pisaturo A, Labos C, Wing SS, Daskalopoulou SS. Diabetes, antidiabetic medications and risk of dementia: a systematic umbrella review and meta-analysis. Diabetes Obes Metab. 2024;26(2):441-62. doi: 10.1111/dom.15331.
- Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: an overview. Avicenna J Med. 2020;10(4):174-88. doi: 10.4103/ajm.ajm_53_20.
- Fan C, Zhang J, Qiu D. Causal relationship between genetically predicted type 2 diabetes mellitus and male infertility. Front Endocrinol (Lausanne). 2024;15:1357279. doi: 10.3389/ fendo.2024.1357279.
- Zhu JL, Cai YQ, Long SL, Chen Z, Mo ZC. The role of advanced glycation end products in human infertility. Life Sci. 2020;255:117830. doi: 10.1016/j.lfs.2020.117830.
- Barkabi-Zanjani S, Ghorbanzadeh V, Aslani M, Ghalibafsabbaghi A, Chodari L. Diabetes mellitus and the impairment of male reproductive function: possible signaling pathways. Diabetes Metab Syndr. 2020;14(5):1307-14. doi: 10.1016/j.dsx.2020.07.031.
- Serwaa D, Bello FA, Osungbade KO, Nkansah C, Osei- Boakye F, Appiah SK, et al. Prevalence and determinants of low testosterone levels in men with type 2 diabetes mellitus; a case-control study in a district hospital in Ghana. PLOS Glob Public Health. 2021;1(12):e0000052. doi: 10.1371/journal. pgph.0000052.
- Huang R, Chen J, Guo B, Jiang C, Sun W. Diabetes-induced male infertility: potential mechanisms and treatment options. Mol Med. 2024;30(1):11. doi: 10.1186/s10020-023-00771-x.
- Li N, Yang Y, Cui D, Li C, Ma RCW, Li J, et al. Effects of lifestyle intervention on long-term risk of diabetes in women with prior gestational diabetes: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2021;22(1):e13122. doi: 10.1111/obr.13122.
- Lunetti P, Capobianco L, Zara V, Ferramosca A. Physical activity and male reproductive function: a new role for gamete mitochondria. Exerc Sport Sci Rev. 2021;49(2):99-106. doi: 10.1249/jes.0000000000000245.
- Wang ZQ, Zhang XH, Russell JC, Hulver M, Cefalu WT. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats. J Nutr. 2006;136(2):415-20. doi: 10.1093/jn/136.2.415.
- Pala R, Sari MA, Erten F, Er B, Tuzcu M, Orhan C, et al. The effects of chromium picolinate on glucose and lipid metabolism in running rats. J Trace Elem Med Biol. 2020;58:126434. doi: 10.1016/j.jtemb.2019.126434.
- Khare S, Kumar M, Kumar V, Kushwaha R, Vaswani S, Kumar A, et al. Dietary chromium picolinate supplementation improves glucose utilization in transition calf by ameliorating insulin response. Biol Trace Elem Res. 2023;201(6):2795-810. doi: 10.1007/s12011-022-03405-1.
- Ferguson B. ACSM’s guidelines for exercise testing and prescription 9th ed. 2014. J Can Chiropr Assoc. 2014;58(3):328.
- Jangjo-Borazjani S, Dastgheib M, Kiyamarsi E, Jamshidi R, Rahmati-Ahmadabad S, Helalizadeh M, et al. Effects of resistance training and nigella sativa on type 2 diabetes: implications for metabolic markers, low-grade inflammation and liver enzyme production. Arch Physiol Biochem. 2023;129(4):913-21. doi: 10.1080/13813455.2021.1886117.
- Arslan F, Güven ŞD, Özcan A, Vatansev H, Taşgin Ö. The effect of exercise, reflexology and chrome on metabolic syndrome. Int J Med Res Health Sci. 2018;7(8):77-85.
- Joseph LJ, Farrell PA, Davey SL, Evans WJ, Campbell WW. Effect of resistance training with or without chromium picolinate supplementation on glucose metabolism in older men and women. Metabolism. 1999;48(5):546-53. doi: 10.1016/s0026-0495(99)90048-3.
- Hurley BF, Hanson ED, Sheaff AK. Strength training as a countermeasure to aging muscle and chronic disease. Sports Med. 2011;41(4):289-306. doi: 10.2165/11585920- 000000000-00000.
- Boyer W, Toth L, Brenton M, Augé R, Churilla J, Fitzhugh E. The role of resistance training in influencing insulin resistance among adults living with obesity/overweight without diabetes: a systematic review and meta-analysis. Obes Res Clin Pract. 2023;17(4):279-87. doi: 10.1016/j.orcp.2023.06.002.
- Pereira SC, Oliveira PF, Oliveira SR, de Lourdes Pereira M, Alves MG. Impact of environmental and lifestyle use of chromium on male fertility: focus on antioxidant activity and oxidative stress. Antioxidants (Basel). 2021;10(9):1365. doi: 10.3390/antiox10091365.
- Ali A, Ma Y, Reynolds J, Wise JP Sr, Inzucchi SE, Katz DL. Chromium effects on glucose tolerance and insulin sensitivity in persons at risk for diabetes mellitus. Endocr Pract. 2011;17(1):16-25. doi: 10.4158/ep10131.Or.
- Sreejayan N, Dong F, Kandadi MR, Yang X, Ren J. Chromium alleviates glucose intolerance, insulin resistance, and hepatic ER stress in obese mice. Obesity (Silver Spring). 2008;16(6):1331-7. doi: 10.1038/oby.2008.217.
- Sidhom K, Panchendrabose K, Mann U, Patel P. An update on male infertility and intratesticular testosterone-insight into novel serum biomarkers. Int J Impot Res. 2022;34(7):673-8. doi: 10.1038/s41443-021-00507-7.
- McAdory D, Rhodes NR, Briggins F, Bailey MM, Di Bona KR, Goodwin C, et al. Potential of chromium(III) picolinate for reproductive or developmental toxicity following exposure of male CD-1 mice prior to mating. Biol Trace Elem Res. 2011;143(3):1666-72. doi: 10.1007/s12011-011-9002-4.
- Moreira R, Martins AD, Alves MG, de Lourdes Pereira M, Oliveira PF. A comprehensive review of the impact of chromium picolinate on testicular steroidogenesis and antioxidant balance. Antioxidants (Basel). 2023;12(8):1572. doi: 10.3390/antiox12081572.
- Patel AS, Leong JY, Ramos L, Ramasamy R. Testosterone is a contraceptive and should not be used in men who desire fertility. World J Mens Health. 2019;37(1):45-54. doi: 10.5534/wjmh.180036.
- Cano Sokoloff N, Misra M, Ackerman KE. Exercise, training, and the hypothalamic-pituitary-gonadal axis in men and women. Front Horm Res. 2016;47:27-43. doi: 10.1159/000445154
- He Z, Yin G, Li QQ, Zeng Q, Duan J. Diabetes mellitus causes male reproductive dysfunction: a review of the evidence and mechanisms. In Vivo. 2021;35(5):2503-11. doi: 10.21873/ invivo.12531.
- Yao QM, Wang B, An XF, Zhang JA, Ding L. Testosterone level and risk of type 2 diabetes in men: a systematic review and meta-analysis. Endocr Connect. 2018;7(1):220-31. doi: 10.1530/ec-17-0253.
- Low BS, Choi SB, Abdul Wahab H, Das PK, Chan KL. Eurycomanone, the major quassinoid in Eurycoma longifolia root extract increases spermatogenesis by inhibiting the activity of phosphodiesterase and aromatase in steroidogenesis. J Ethnopharmacol. 2013;149(1):201-7. doi: 10.1016/j. jep.2013.06.023.
- Russo V, Chen R, Armamento-Villareal R. Hypogonadism, type-2 diabetes mellitus, and bone health: a narrative review. Front Endocrinol (Lausanne). 2020;11:607240. doi: 10.3389/ fendo.2020.607240.
- Siavoshy H, Heidarianpour A. Effects of three type exercise training programs on FBS and HbA1C of elderly men with type 2 diabetes. Iran J Diabetes Obes. 2017;9(1):14-9.