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Abstract 

Background: Stem cell therapy has been developed as an effective treatment method for the 

heart failure. Also, extracellular matrix has shown the positive effects in stem cell 

differentiation and myocardial tissue organization. Cardiogel is a native cardiac extracellular 

matrix (ECM) derived from cardiac fibroblasts. In the present study the role of cardiogel is 

examined for its cardiomyogenic potential on mouse bone marrow- derived mesenchymal 

stem cells (BM-MSCs).  

Method: The BM-MSCs were isolated from six-week-old mice. Cardiac fibroblasts were 

collected from neonatal heart mice and the cells were seeded on 0.2% gelatin pre-coated plates 

for up to 21 days. Then, the decellularization was performed via enzymatic digestion. For 

cardiomyocyte differentiation, the BM-MSCs were plated on matrix-coated plates 

(Cardiogel, CCP), Matrigel-coated plates (MCP) and gelatin-coated plates (GCP) as a control 

group at a density of 1 × 104 cells per cm2 in CM containing 3 M 5-azacytidine.  

Results: The results proved that cardiogel is capable to promote the cardiomyogenic 

differentiation of BM-MSCs. Cardiogel had a great influence on cellular adhesion, gene 

expression and cardiomyocyte differentiation compared to MCP and GCP. Gene expression 

analysis showed that cardiac specific markers were expressed in BM-MSCs has grown in 

CCP that represented the cardiac-specific differentiation.  

Conclusion: Our results suggest that cardiogel is an effective ECM that can improve the 

cardiomyogenic differentiation of BM-MSCs, and it can be used as a possible therapeutic 

approach in cardiac tissue regeneration. 
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Introduction 

The extracellular matrix (ECM) is an important component 

for the promotion of cell adhesion, proliferation and 

differentiation as well as maintenance of tissue homeostasis 

throughout the whole organism. All cells exist in a specialized 

environment that their biological activities are regulated by this 

environment that is called ECM (1). Biological scaffold derived 

from the ECM tissues are effectively used in different aspects 

of tissue engineering, same as artificial scaffolds (2).  

In the heart tissue, cardiac fibroblasts synthesize the ECM 

which is called Cardiogel. This substrate is composed of 

laminin, fibronectin, Type I and III collagen, proteoglycans and 

growth factors (3). Cardiogel is essential for inducing more 

functional beating myocytes from mesodermal stem cells. 

Also, cardiogel provides tissue-specific stem cell niches which 

are promising inducers for cardiac regeneration (4-6). 

Myocardial infarction (MI) reduces normal 

cardiomyocytes in the heart. One approach to compensate this 

decline after MI is cell transplantation. Several animal studies 

have recommend different types of cells for transplantation in 

cardiac diseases (7). 

Among different stem cells of the adult person, bone 

marrow is an invaluable source of stem cells. The bone 

marrow-derived mesenchymal stem cells (BM-MSCs) may 

have the potential for application in regeneration of the heart 

tissue because they have differentiation capacity into the 

cardiomyocyte (8). Recent studies have shown that the stem 

cells play a key role concerning tissue repairs after 

transplantation via the secretion of a variety of factors (9-14). In 

addition, BM-MSCs are readily available and easily expanded 

in vitro (15). The important point about the BM-MSCs is that 

BM-MSCs are immunologically compatible, so, they can be 

used easily for allogeneic organs (16). Despite these 

advantages, the BM-MSCs need to be combined with other 

materials or structures in clinical cellular cardiomyoplasty. The 

source of the BM-MSCs is limited and their differentiation 

capacity decrease with age. ECM components significantly 

affect the growth of cardiomyocytes. Moreover, ECM 

components can induce the development of physiological 

activity and morphological differentiation. This indicates the 

ability of ECM components for differentiation of mesenchymal 

stem cells into cardiomyocytes (17). 

Recently, several reports have demonstrated that the 

combination of stem cells and artificial extracellular matrix 

such as Matrigel can improve the differentiation of stem cells 

into heart tissue. Although this type of treatment is promising, 

but there are so many problems for fabricating engineered heart 

tissue from stem cells such as differentiation into different cells 

of heart tissue and the high percentage of transplanted cells 

death (18-21).  

Several studies have introduced the attempts of repairing 

the failing heart with the use of stem cells. This study was 

undertaken to further investigate and expand on cellular 

adhesion, cell viability, gene expression and morphological 

differentiation of bone marrow- derived mesenchymal stem 

cells to cardiomyocyte.  

 

Material & Methods 

Isolation, culture and expansion of BM-MSCs 

The BM-MSCs were isolated from femur and tibiae of six-

week-old mice. Femur and tibiae were dissected and the ends 

of the bones were cut away and the bone marrow was flushed 

out with culture medium (Dulbecco’s modified Eagle’s 

medium, DMEM/F12, Invitrogen Inc., Carlsbad, CA) 
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supplemented with 10% fetal bovine serum (GIBCO), and 1% 

w/w penicillin/streptomycin (GIBCO). The cells were seeded 

in 25 Cm2 plastic cell flasks with culture medium and then 

incubated at 37 ºC in a humidified atmosphere containing 95% 

air and 5% CO2. On the third day, non-adherent cells and debris 

were removed by changing culture medium and fresh medium 

was added to flasks to allow further growth. The adherent cells 

grown to 80-90% confluency were detached by 0.05% trypsin 

and 0.02% EDTA for 5–10 min at 37 ºC. After centrifugation, 

cells were resuspended in new flasks with mentioned culture 

medium. After the third to fifth passage, the cells were 

trypsinized and used for following steps (22). 

 

Adipogenic and Osteogenic Differentiation  

To test the BM-MSCs nature the differentiation potential of 

stem cells into adipocyte and osteocyte were analyzed. 

Adipogenic differentiation assay was performed by culture of 

bone marrow derived cells in medium supplemented with 10% 

FBS and 100 nM dexamethasone (Sigma- Aldrich) for 21 days 

(d) weeks. For analysis of osteogenic differentiation, the bone 

marrow derived cells were cultured in medium containing 10 

nM β- glycerophosphate, 80 µg/ml ascorbic acid and 10 nM 

dexamethasone (Sigma- Aldrich) for 21 d. Then, the cultured 

cells were fixed by 4% paraformaldehyde (PFA, Sigma- 

Aldrich), and stained with Oil red (Sigma- Aldrich) and 

Alizarin Red S (Merck) for visualization of adipogenic and 

osteogenic differentiation, respectively.  

 

Flow Cytometry Analysis  

The homogeneity of the BM-MSCs was quantified by flow 

cytometry. After third to fifth passage, the cells were treated 

with trypsin/EDTA for 5 min to form single cells and 

suspended in PBS. Then, the flow Cytometry machine (FCM, 

BD FACS Caliber, Becton Dickinson, San Jose, CA, USA) 

was used to analyze the BM-MSCs markers CD90, CD105 and 

hematopoietic stem/progenitor cell marker CD34. 

 

Preparation of Cardiogel 

Isolation of Cardiac Fibroblasts  

The heart of neonatal (3 d) mice were dissected, minced and 

enzymatically disaggregated by incubation in 0.25% trypsin- 

EDTA (Sigma- Aldrich) and 0.1% collagenase (Sigma, 

C7661) for 30 minutes (min) at 37 ºC with gentle shaking. The 

supernatant containing single cells was centrifuged at 2500g for 

5 min at 4o C and the pellet was resuspended in the DMEM/F12 

medium containing 15% FBS, 1% w/w 

penicillin/streptomycin, 2mM L-glutamine (Invitrogen) and 

0.1mM non essential amino acids (Invitrogen) that was known 

as the Cardiac Medium (CM). To pereplating, the mixed cell 

population was seeded on 1% gelatin-coated plates and 

incubated at 37 °C in 95% air, 5 % CO2 for 45 min, then, the 

non-adherent cells were removed by changing the medium and 

the plates were washed two times with PBS. The adherent cells 

were cultured in CM at 37 °C in 5 % CO2. 

 

Extracellular Matrix Deposition and Decellularization 

For extracellular matrix (ECM) deposition, cardiac 

fibroblasts were re-plated on 0.2% gelatin pre-coated plates at a 

density of 1×104 cells/cm2 in CM for up to 21 d. After reaching 

to adequate confluency, decellularization was performed by 

aspirating the medium and rinsing with PBS. Fibroblasts were 

removed from the underlying matrix by incubation in a 37 °C 

incubator with 1 ml pre-warmed extraction buffer (0.25% 

Triton X- 100 and 10 mM NH4OH in PBS) for 1-2 min. Then, 
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the plates were washed off several times with chilled PBS until 

the matrix was denuded of cells. Plates were observed by using 

an inverted microscope (Nikon Eclipse TS100, Melville, NY, 

USA), to ensure that the complete cell lysis happened and no 

intact cells were remained. Finally, the matrix-coated plates 

were stored at 37 °C in PBS containing 100 U/ml penicillin, 

100 g/ml streptomycin, and 0.25 g/ml fungizone for use 

afterward. Control plates were coated with 0.2% gelatin. 

  

Induction of Cardiogenic Differentiation 

For cardiomyocyte differentiation, the BM-MSCs were 

plated on matrix-coated plates (Cardiogel, CCP), Matrigel-

coated plates (MCP) and gelatin-coated plates (GCP) as a 

control group at a density of 1 × 104 cells per cm2 in CM 

containing 3 M 5-azacytidine (Sigma- Aldrich). The duration 

of the experiment was 12 d and the medium was refreshed 

every two days. 

 

MTT Assay  

Cell viability was evaluated based on mitochondrial 

function of living cells by reduction of the tetrazolium salt 

(MTT, 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-

2Htetrazolium bromide) at 4 different time points (3rd, 6th, 9th 

and 12th day) in 96-well microplates (Falcon). Briefly, 5 × 103 

BM-MSCs per 200 ml medium was seeded on different coated 

plates (matrix-, matrigel- and gelatin- coated plates) in CM 

containing 3 M 5-azacytidine for 12 days at 37 °C in 5% CO2. 

Then, the wells were washed with PBS, and 50 μl of 1 mg/ml 

MTT solution (Sigma-Aldrich) constituted in PBS was poured 

to each well and the cells were incubated for 3 hours at 37 °C. 

After incubation, the culture medium were removed and 50 μl 

of 100 % Dimethyl sulfoxide (DMSO) were mixed, then 

placed on a shaker for 10 min (23). The results were analyzed 

by spectrometric absorbance at 570 nm (Haratizadeh, et 

al; 2016) (PerSeptive Biosystems, Framingham, 

Massachusetts, USA). 

 

Cell Adhesion Evaluation  

The cellular adhesion assays were performed by a modified 

protocol described by (Vohra, et al, 2008). 

The BM-MSCs were seeded onto matrix-, matrigel- and 

gelatin- coated plates in CM containing 3 M 5-azacytidine in 

concentration of 1 × 104 cells per well of a 6-well plate and 

incubated in a humidified atmosphere of 95% air and 5% CO2 

at 37 ºC. When the cells reached to approximately 70% 

confluency, the wells were washed three times with PBS and 

trypsinized with 0.25% Trypsin-EDTA at three time intervals 

(0.5, 2.5 and 5 min). Then, the plates were washed several times 

with PBS and the cellular adhesion was measured by the MTT 

test.  

 

Morphological features of cardiomyocyte differentiated of 

BM-MSCs 

For detailed observation of the morphological changes, 

cells in the last day of differentiation were rinsed with PBS, then 

cells were fixed with ethanol for 5 min at room temperature 

(RT), and stained with Giemsa (Merck) for 2 min. 

Photomicrographs were taken with a Nikon digital camera 

coupled to an inverted microscope (Nikon, Eclipse-TS100). 

 

Immunofluorescence staining 

For immunofluorescent staining, the BM-MSCs (1 × 104 

cells per cm2) were cultured on different coated plates in CM 

containing 3 M 5-azacytidine for 12 d. PBS at PH 7.4 was 
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used for washing stem cells. Then, 4% PFA was used for fixing 

cells at room temperature for 30 minutes. 0.025% Triton X-100 

was provided for permeabilizing the cells for 10 min at RT. 

Unspecific binding of the antibody was prevented by 

incubating the cells in 10% goat serum for 30 min. Incubation 

with cTnI primary antibody (Rabbit polyclonal, ab47003, 

abcam system) diluted 1:1000 in TBST [Tris buffered saline 

(TBS), 1% BSA and 0.1% Tween-20 (all Sigma)] was done for 

60 min at RT. Then, three washes with PBS were performed 

and incubation with the FITC-conjugated Goat polyclonal 

secondary antibody to Rabbit IgG (ab975, abcam system, 

diluted 1:100 in TBST) were done for 45 min in the dark at RT, 

then cells were washed eight times with PBS. Nuclei were 

counterstained by 3,3'-diaminobenzidine (DAPI, sigma) 

staining.  

To verify the complete decellularization of ECM, 

Fibroblasts were removed by incubation with pre-warmed 

extraction buffer (nonenzymatic). Then, decellularized ECM 

was fixed with 4% PFA for 20 min and washed with PBS. The 

plates were mounted with DAPI to confirm removal of the 

cells.  

In addition, decellularized ECM was fixed with 4% PFA 

for 20 min at RT and then blocked with 10% goat serum. The 

plates were incubated with primary antibody against laminin 

(Rat monoclonal to Laminin, ab11576, abcam system). Further 

incubation with the FITC- conjugated sheep anti-Rat 

polyclonal secondary antibody (ab53435, Invitrogen) were 

performed for 45 min in the dark at RT. Then, the plates were 

washed 3 times in PBS. Images were taken with an Olympus 

phase contrast microscope (BX51, Olympus, Tokyo, Japan) 

(24-26). 

 

Immunoflourescence Staining 

Immunocytochemistry staining was rendered by the 

streptavidin–peroxidase procedure. The subcultured cells were 

washed with PBS and fixed in 4% PFA for 30 min and 

premeabilized with 0.2% Triton X-100 for 5 min. Blockage of 

the nonspecific binding was performed by the primary 

antibody, and then cells were incubated with goat serum for 30 

min at RT. Afterwards, cells were treated with 3% H2O2 in 

PBS, and incubated with myogenin (Dako) and F-actin (Dako) 

for 45 min.  

The primary antibodies were incubated using DAB (HRP 

DAB Kit, Genemed Biotechnologies, Inc). Cells were 

evaluated under an inverted light microscope (Nikon, Eclipse-

TS100) and brown cytoplasmic stain was considered as 

positive reaction. 

 

RT-PCR 

Total RNA extraction from cell cultures was performed by 

Trizol Reagent (Invitrogen Life Technologies), and then 

transcribed into cDNA by using reverse transcriptase kit 

(Fermentas), according to the manufacturers’ instructions. RT-

PCR was performed to evaluate the expression of Nkx2.5, α-

MHC, Osteocalcin, Aggrecan and GAPDH genes by using 

SYBR Green master mix (ABI, Step one plus, USA). Primers 

were designed by AlleleID software version 7.6 (Primer 

Biosoft, Palo Alto, USA). Primer sequences are shown in table 

1. The temperature profile in qRT-PCR amplification was (1) 

95°C for 10, (2) 40 cycles of 95°C, 30 seconds; 60°C, 45 

seconds; and 72°C, 45 seconds and (3) 72°C for 7 min for the 

final extension. The ΔΔCt method was used for rating the 

relative quantification of gene expression. 
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Table 1. The sequence of primers 

GENE SIGNIFICANCE PRIMER SEQUENCE PRODUCT SIZE (BP) 

Nkx2.5 Cardiac marker 

5′- CCAAGGACCCTAGAGCCGAA -3′ (F) 

5′- ATAGGCGGGGTAGGCGTTAT -3′ (R) 
461bp 

α-MHC Cardiac marker 

5′- CTGCTGGAGAGGTTATTCCTCG -3′ (F) 

5′- GGAAGAGTGAGCGGCGCATCAAGG -3′ (R) 
301 bp 

Osteocalcin Osteogenic marker 
5′- AGTCACCAACCACAGCATCC -3′ (F) 

5′- TTTGTCCCTTCCCTTCTGCC -3′ (R) 
327 bp 

Aggrecan Chondrogenic marker 
5′-CTGGAGACAGGACTGAAATC-3′ (F) 

5′-CTCCATTCAGACAAGGGCTT-3′ (R) 
297 bp 

GAPDH INTERNAL MARKER 
5′- AGCCACATCGCTCAGACACC--3′ (F) 

5′- GTACTCAGCGGCCAGCATCG -3′ (R) 
302 BP 

 

Statistical analysis 

Statistical analysis was conducted using one-way analysis 

of variance (ANOVA) test, followed by a Tukey post-hoc test 

using SPSS software for Windows, version 23. Differences 

between samples were considered statistically significant at 

P<0.05. 

 

Results 

Morphological characteristics of BM-MSCs 

To make sure the removal of any contamination with 

adherent hematopoietic cells, the BM-MSCs were cultured and 

passaged (P) 3-5 times (Figure 1A, B, C &D). To examine the 

multipotent differentiation potential, the cells were cultured 

under mentioned adipogenic conditions for 21 days. The BM-

MSCs began changing into ovoid morphology and intracellular 

lipid droplets were formed in differentiated cells, as 

approximately 75% of the cells were positive to oil red O 

staining. Osteogenic differentiation was analyzed by culturing 

cells in a specific medium with known osteogenic factors. 

Deposition of a mineralized extracellular matrix in the culture 

was observed by Alizarin red staining. The data confirm that 

these cells are a subset of BM-MSCs (Figure 1 E and F).  
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Figure1. Morphology of the BM-MSCs. (A and B) spindle fibroblast-like cells (P3), (C and D) Giemsa staining proved that BM-MSCs were 

mononuclear, (E) is alizarin red staining for osteogenesis and (F) is Oil Red O staining for adipogenesis. Scale bars; 50µm. 

 

By flow cytometric analysis, the BM-MSCs expressed 

mesenchymal stem cell markers CD105 (87.42%) and CD90 

(83.10%), whereas they were negative for hematopoietic stem 

cell marker CD34 (0.4%) less than 5%. This result also 

revealed that the isolated cells have the basic properties of the 

MSCs (Figure 2). 

 

 

Figure2. Flow cytometry of cell markers in the BM-MSCs. Mesenchymal stem cell markers CD105 (87.41%) and CD90 (83.10%) and 

hematopoietic stem cell marker CD34 (0.4%) and CD34.

 

The complete decellularization of the ECM derived from 

cardiac fibroblasts was first shown by staining nuclei with 

DAPI (Figure 3 A and B). In addition, the ECM components 

of cardiac fibroblasts were tested by immunofluorescent 

staining of laminin (Figure 3 C). 
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Figure3. Verification of ECM substrate decellularization. The pictures were stained by DAPI before (A) and after (B) decellularization. (C) 

Immunofluorescent staining of acellular matrix against laminin (green). Scale bars; 50µm. 

 

Based on the interaction between cellular components and 

matrix surface components, adhesiveness assay was 

performed. For this purpose, cells into the various substrates 

were trypsinized for time periods (0.5, 2.5 and 5 min) to remove 

the non-adherent cells. Total number of adherent cells was 

analyzed by using the MTT test. Our results demonstrated that 

cell survivability was gradually decreased after varying time 

periods of trypsin treatment. However, after exposing cells to 5 

min trypsin treatment, the viability rate of cells in CCP was 2.5 

fold higher than other substrates. Also, the viability rate of cells 

in CCP was more as compared to other substrates in all different 

time periods, indicating that the greatest degree of attachment 

was observed on CCP (Figure 4). 

 

 

Figure 4. Adhesiveness assay after trypsinisation. Pictures of BM-MSCs seeded onto (A) gelatin- coated plates (GCP) as a control group, (B) 

matrigel- coated plates (MCP) and (C) matrix- coated plates (CCP) at a density of 1 × 104 cells per well of a 6-well plate in CM containing 3 M 5-

azacytidine after trypsinisation for 1 min. Scale bars; 50µm. (D) Presents the histogram of the viability percentage of adherent BM-MSCs on GCP, MCP 

and CCP after enzymatic treatment for 0.5, 2.5 and 5 min. The cellular adhesion index was measured by the MTT test (p<0.05). 
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The viability of BM-MSCs gradually decreased from 3rd to 

12th days, but there was no significant difference between the 

different coated plates (substrates). However, the viability 

percentage of BM-MSCs in the CCP was more than other 

substrates at all days (Figure 5).  

 

 

Figure 5. The comparison between the mean percent of viability rates in the BM-MSCs treatment with 5-azacytidine at days 3, 6, 9 and 12. There 

was no significant difference between the different coated plates (p<0.05). 

 

The results of morphological analysis showed that in the 

presence of substrates, treated cells were differentiated 

gradually and transformed to cardiomyocytes. Differentiated 

cells expanded their processes and created myotube like 

organization through formation of connections to adjusted 

cells. In addition, these cells became thinner and longer and 

formed clusters of 8-10 cells aligned parallel to each other. 

Also, differentiated cells seem striated with eccentric nucleus 

and end branched.  

Our immunofluorescent results showed that cTnI positive 

cells were observed only in cardiogel/CCP cultured (Figure 6 

B and C). Additionally, some Myogenin and F-actin positive 

cells were observed (Figure. 6 D) (Figure. 6 E & F). 
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Figure 6. Immunophenotype of cultured BM-MSCs on matrix- coated plates in CM containing 3 M 5-azacytidine. Immunocytochemical staining 

with FITC-labeled secondary antibody for expression of cardiac marker cTnI; phase contrast (A), flourocent microscopy (B) and higher magnification 

microscopy image of the encircled zone indicated by the inset in (A and B) illustrating morphology and cTnI expression pattern. The treated BM-MSCs 

demonstrated positive reaction with myogenin (D), and also, with F-actin in clusters (E) and in a single cell (F). Scale bars; 50µm in A, B, D and E and 

20µm in C and F.  

 

Using RT-PCR, we assessed the expression of cardiac 

specific, osteogenic and chondrogenic markers in the three 

different substrates. Early cardiac transcription factor Nkx2.5 

was expressed in CCP and MCP. While, α-MHC (cardiac 

myosin heavy chain) which is known to be mainly a marker for 

mature cardiac cells that interacts with actin was expressed only 

in CCP. The expression of aggression, which is considered as 

the chondrogenic marker, was supported in MCP and GCP 

(Figure. 7). 

 

 
Figure 7. RT-PCR analysis of cardiac-specific markers (Nkx2.5 and α- MHC), osteogenic marker (osteocalcin) and chondrogenic marker (aggrecan) 

on matrix- coated plates (cardiogel, CCP), matrigel- coated plates (MCP) and gelatin- coated plates (GCP).
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Discussion 

Cell–matrix interactions play a crucial role in stem cell 

differentiation, as well as the regulation of the structure and 

function of individual cells and tissues. Cardiogel, the native 

ECM of the heart, is secreted by cardiac fibroblasts, and 

includes collagen (type I and III) and adhesive glycoproteins 

(laminin and fibronectin). We hypothesized that Cardiogel can 

provide instructive microenvironment which may enhance 

BM-MSCs specification toward cardiomyocyte. In our study, 

cultured BM-MSCs on Cardiogel have exhibited more specific 

features into functional cardiomyocytes than the control group. 

We found that Cardiogel can affect cellular adhesion, cell 

viability and gene expression of BM-MSCs during 

cardiomyocyte differentiation. In our study, the viability rate of 

cells in CCP was 2.5 fold higher than other substrates (MCP 

and GCP) due to the higher degree of cell attachment in this 

group. Morphological differentiation such as expansion of cell 

processes and creation of myotube like organization happened 

in differentiated cells. In RT-PCR assay was observed Nkx2.5 

(early cardiac transcription factor) expressed in CCP and MCP, 

while, α-MHC (cardiac myosin heavy chain) was expressed 

only in CCP. However, osteogenic marker (osteocalcin) was 

only expressed in GCP, and the expression of chondrogenic 

marker (aggrecan) happened in MCP and GCP.  

Several studies have indicated that the nature of the ECM 

in which cells are cultured on it can affect the fate of one kind 

of cells to various differentiated cells (27). ECM components 

have regulatory effets on cell proliferation and differentiation 

(28). Cardiogel in the body differs from the invitro synthesized 

Cardiogel, because the culture condition can change the type 

and amount of proteins which is produced by cardiac 

fibroblasts. In addition, the orientation of matrix components in 

culture environment can affect differentiated cardiomyocytes 

phenotype (3). Our results confirmed the influence of ECM on 

the differentiation efficiency of BM-MSCs. 

Different studies have shown the important role of the 

ECM, as an effective component of the stem cell niche, on stem 

cell proliferation, self-renewal and differentiation (29). Besides, 

ECM stiffness has noticeable effects on stem cell differentiation 

(30). The stiffness of the substrate from soft to hard condition 

can affect the fate of MSC. For example, soft substrates may 

promote differentiation into the neurogenic lineage, but stiff 

substrates may promote differentiation into the osteogenic 

lineage (31). Also, hydrostatic pressure (HP) can regulate stem 

cell fate especially in cartilage tissue production. It has been 

reported that HP increases chondrogenic gene expression and 

matrix production in MSCs (32). 

Previous studies demonstrated that cultured BM-MSCs on 

Cardiogel ECM had higher proliferation and differentiation 

abilities. By the same token, they had a higher survival rate 

under oxidative stress. Cultured BM-MSCs on Cardiogel ECM 

had a higher resistance rate to proteolytic disassociation (33). 

Evidence shows that culture in Cardiogel coated plates would 

increase cellular adhesion compared to the non-coated plates 

(34, 35). In our study, after exposing cells to trypsin for 5 

minutes, the viability rates in CCP was 2.5 fold higher than 

GCP and MCP. This effect of Cardiogel which can increase 

cellular adhesion of stem cells can be used in tissue engineering 

particularly for transplanting stem cells into the damaged tissue. 

Our results confirmed the positive effects of culturing stem cells 

in Cardiogel coated plates, as a promising therapeutic approach 

for curing heart failure by increasing viability rates, enhancing 

proliferation and differentiation abilities and producing 

differentiated cardiomyocytes (36). 
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Previous studies demonstrated that Cardiogel can promote 

differentiation of murine embryonic stem cells into working 

cardiomyocytes (37). During normal cardiogenesis in the body, 

myofibrils firstly spread in irregular arrays, which matured into 

parallel arrays, but in vitro studies reported that M-band is not 

recognizable during long-term culturing of human-ES-derived 

cardiomyocytes (38). There are several reports that highlighted 

the effects of cell microenvironment such as ECM structure on 

the viability and differentiation of cultured cells. For instance, 

cardiac matrix can organize multicellular clusters with 

intercellular desmosomal attachment similar to the cardiac 

intercalated disc from hESC, but skeletal muscle matrix can 

organize larger myotubes (39).  

In cardiogenesis, Nkx2.5, GATA-4 and MEF2C were 

identified as main regulators in cardiac development (8). The 

expression of cardiac transcription factor Nkx 2.5 was 

increased in the CCP and MCP. This confirmed the influences 

of Cardiogel and Matrigel in stimulating cardiogenesis. Other 

important cardiogenic genes are cardiac alpha-myosin heavy 

chain (α-MHC) and cardiac beta-myosin heavy chain (β-

MHC) which are known as cardiac structural genes (13). In our 

study, α-MHC which is known as a main marker of mature 

cardiac cells was expressed only in CCP. 

In summary, the present study has indicated that Cardiogel 

can promote the cardiomyogenic differentiation of BM-MSCs. 

Cardiogel had positive effects on cellular adhesion, cell 

viability, cardiac gene expression and cardiomyocyte 

differentiation compared to the matrigel and gelatin- coated 

plates. Osteogenic and chondrogenic markers didn’t express in 

BM-MSCs cultured in CCP, while cardiac specific markers 

expressed in BM-MSCs cultured in CCP which represented the 

cardiac-specific differentiation. The current study indicates that 

Cardiogel has a wide impact in tissue engineering and stem cell 

biology and can be used for replacing damaged regions or lost 

myocardial tissues to restore cardiac function. 
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