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ABSTRACT 
Background: In the last few decades, many studies have been done on the treatment of 
premature ovarian failure. This review was conducted to study different types of treatment with 
a focus on the 3D culture model of stem cells as a pluripotent source for repairment in 
regenerative medicine for this disease in recent decades. 
Methods: To conduct this review, electronic databases of MEDLINE, Scopus, PubMed, and Web 
of Science were searched using MeSH terms. Only English articles were included, and case 
reports were excluded. The keywords used for the search were mentioned as the keywords of 
the paper.  
Results: To transplant the stem cells into the patient's body, the 3D culture of these cells in vitro 
and the molecular and cellular aspects of these cells were considered, and their success rate and 
differentiation were compared to granulosa cells or oocytes.  
Conclusion: The present study aimed to discuss the potential effects of stem cells for 
regeneration and recovery of ovarian function in premature ovarian failure as a useful therapy. 
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Introduction 

remature ovarian failure (POF) is a disease 

that occurs with normal ovarian 

dysfunction in women under the age of 40, 

with a prevalence rate of 1%. Several known 

factors cause POF, such as X chromosome 

abnormalities, genetics, autoimmune, metabolic, 

idiopathic, etc. (1-3).  

The menopause of women occurs around the 

age of 50 (4). Many factors affect menopause in 

women, including economic status, body weight, 

smoking, race, cardiovascular diseases, 

amenorrhea, diabetes mellitus, as well as 

ethnicity (5-7).  

In recent years, the incidence of cancer and 

subsequent chemotherapy and radiotherapy have 

increased the risk of developing POF in women. 

Since ovarian reserves are limited and cannot 

increase, it is essential to maintain primary 

follicles and ovarian reserves during cancer 

treatment. Symptoms of POF in women are 

similar to the physiology of menopause. So, 

patients with POF are at higher risk of 

cardiovascular diseases and osteoporosis (8, 9). 

Various methods have been proposed for POF 

treatment such as multipotent stem cells 

transplantation with new approaches for the 

development of oocytes from embryonic stem 

cells (ESC), induced pluripotent stem cells (iPS 

cells), ovarian stem cells (OSCs), pluripotent 

stem cells (PSCs), spermatogonial stem cells 

(SSCs), and very small embryonic-like stem 

cells (VSELs) (10). Also, optimal use of the 3D 

culture medium of these stem cells in vitro and 

its transplantation to POF patients and cellular 

approaches in oocytes, such as investigating the 

role of disorder mitochondria of the oocyte in the 

occurrence of POF, are discussed.   

 

Symptoms  

POF symptoms are similar to menopausal 

physiology such as infertility with stopping of 

follicular ovarian activity and hormonal defects. 

The major defect in POF patients is that they are 

prone to neurological, metabolic, and 

cardiovascular diseases and are at a high risk of 

osteoporosis (8, 11). 

In healthy women, the amount of the follicle-

stimulating hormone (FSH) level is normally 

lower than 10 mIU/ml. This hormone causes the 

growth of granulosa cells and depletion of 

follicles, which leads to further depletion of 

ovarian reserves (12). In POF patients, the FSH 

level will be higher than 10 mIU/ml (12). 

The laparoscopy of people with POF shows 

the lack of follicles development, and the 

ovarian biopsy also shows a network of 

connective tissue with diffuse fibroblasts in the 

ovary. In addition, patients with decreased 

estrogen production often suffer from atrophy of 

the uterus and vagina (13). 

 

Etiology 

Many factors cause POF (8). These cases can 

be divided into  two genetic and environmental 

mechanisms environmental and genetic groups 

(14).  

The NR5A1, NOBOX, FIGLA, and FOXL2 

genes, as specific transcription factors, are 

involved in the differentiation of primordial 

follicles into primary follicles (15). 

Previous studies have shown that mutations 

in the β subunit of FSH and the LH receptor 

cause POF. The ovarian biopsy shows that 

primordial, early antral, and antral follicles are 

visible, but there is no pre-ovulation follicle, 

corpus luteum, and corpus albicans (16).  

Estrogen is the steroid hormone derived from 

cholesterol; thus, the overall decrease in 

cholesterol in the arteries has been suggested as 

a cause of POF. Also, in patients with disorders 

of steroid hormone synthesis such as the 17α-

hydroxylase deficiency, both adrenal and 

gonadal steroidogenesis are decreased, leading 

to ovarian failure (17). Moreover, estrogen 

levels can affect cognitive impairment, 

dementia, and Alzheimer's disease (18). So, the 

risk of developing chronic diseases such as type 

2 diabetes, Parkinson's disease, and 

cardiovascular mortalities is higher in POF 

patients (19, 20). 

Changes in the immune system may cause 

POF by destroying follicles or normal ovarian 

dysfunction. Autoimmune markers have been 

investigated in the serum of patients with POF. 

It has been suggested that antibodies can be 

produced against steroidogenic enzymes, 

gonadotropins and their receptors, corpus 

luteum, zona pellucida, and oocyte, which can 

lead to POF (21). 

Chemotherapy and radiotherapy in young 

women with cancer are among the highest risk 

factors for POF (22) because chemotherapy 

agents damage granulosa and theca cells, which 

produce steroids, as well as oocytes (23, 24). 

Any defect in the sex chromosome X, such as 

Turner syndrome and elimination in the long arm 

of the X chromosome (Xq), can lead to POF. 

There are three critical loci leading to ovarian 

P 
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development on the X chromosome that include 

Xp22, Xq26-Xq28, Xql3-22 (14, 25). 

Recent findings have shown that the 

SPO11(proline-to-threonine at position 306) is a 

topoisomerase-like protein that plays a pivotal 

role in the generation of DNA double-strand 

breaks (DSBs), synapsis, and initiating meiotic 

recombination of homologous chromosomes. 

Mutations in this gene reduce the detection of 

DSBs by DNA damage checkpoints and so 

increase segregation errors in the Meiosis I 

chromosome in oocytes. Therefore, mutation of 

SPO11P306T/P306T affects oogenesis in mice 

and can interfere in infertility in mice and POF 

(26, 27). 

Mitochondria functions can directly affect 

different aspects of the cell such as oocyte 

quality, fertilization process, and embryo 

development (28, 29). So, the oocyte 

mitochondrial DNA (mtDNA) content is related 

to the probability of zygote development. It has 

been evidenced that mitochondrial genetic 

disorders and mitochondrial oxidative stress are 

associated with POF (30, 31). 

 

Ovarian stem cell 

Recent research has shown the presence of 

ovarian stem cells in postnatal mammalian 

ovaries, which requires further investigation. 

These stem cells are also called putative stem 

cells (PSCs) (32).  Johnson et al. )2004( first 

reported the presence of these stem cells in 

mammals (33). Since then, many studies have 

been done in this field (34-38). Several articles 

have been published since 2017 on the existence 

of these stem cells, playing a major role in the 

development of ovarian cancer (39-46). 

Numerous articles have discussed the presence 

of these cells and how they are isolated and 

purified. But the presence of these cells and the 

differentiation of these cells into oocytes is still 

in an aura of ambiguity. Further research is 

needed to prove and make use of these cells. 

 

Other types of stem cells in the treatment of 

POF  

Many studies have focused on mesenchymal  

stem cell therapy as cell sources for repairment 

in regenerative medicine (Figure 1) (47-54).  

 

 
Figure 1.  The recommended treatment of female infertility in POF patients 

 

Although these stem cells have become very 

popular and have been used to treat many 

diseases such as muscular dystrophies, diabetes, 

heart failure, and spinal cord injury (55), there 

are still criticisms by some researchers. These 

cells are characterized by growing rapidly and 

are minimally invasive and  safe for autologous 

transplantation. In addition, these cells are able 

to differentiate into many specialized cells and 

usually form a small percentage of the total cells 

of a member. These cells will remain 

indistinguishable until they have received a 

specific signal for differentiation (Table 1) (48, 

56).  

In 2013, Henningson et al. investigated the 

use of mouse engineered ESCs (endometrial 

stem cells), under the regular control of the 

Forkhead box L2 (Foxl2) gene promoter in 

ovarian granulosa cells, which is used to trace 

granulosa cellular function and fate in vitro and 
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in vivo. It was shown that these cells are capable 

of differentiating into somatic ovarian cells  and 

expressing Foxl2 in vitro, synthesizing steroids, 

responding to FSH, and interfering in 

folliculogenesis in vivo; it is noteworthy that 

granulosa cells can produce steroid hormones 

(57). 

 
Table 1. The types of stem cells used to treat POF and their results. 

Stem cell types Researchers Method Result 

Very small embryonic-like 

(VSEL) identified in adult 

bone  marrow 

Kucia et al. (2006) 
These cells can be differentiated 

into different types of cells 

These cells can act as a good 

source for the ovaries 

regeneration in POF disease 

Bone mesenchymal stem cell 

(MSC) 
Fu et al. (2008) 

Transplantation of MSC into 

POF ovaries rats 

These stem cells differentiate into 

granulosa cells and decrease the 

expression level of BAX genes 

unlike Bcl2 in vivo. 

Human amniotic fluid cells 

(HuAFCs) 
Liu et al. (2012) 

Transplantation of HuAFCs into 

POF mice 

CD44+/CD105+ HuAFCs 

subpopulation represent potential 

seed cells for stem cell 

transplantation treatments for 

POF 

Endometrial stem cells (ESCs) Dori et al. (2013) 
ESCs labeled with the forkhead 

box L2 (Foxl2) gene promoter 

These cells are capable of 

differentiating into somatic 

ovarian cells 

Adipose-derived stem cells 

(ADSCs) 
Sun et al. (2013) 

Transplantation of ADSCs into 

POF mice 

These cells cause changes in the 

genes involved in follicle 

formation and ovulation 

Human menstrual blood stem 

cells (HuMenSCs) 
Wang et al. (2013) 

Transplantation of HuMenSCs 

into POF mice 

Ovarian function was improved 

by monitoring serum sex 

hormone levels and HuMenSCs 

tracking, Q-PCR. 

Human menstrual blood stem 

cells (HuMenSCs) 
Liu et al. (2014) 

Transplantation of HuMenSCs 

into POF mice 

These stem cells increase the 

mRNA expression pattern of 

ovarian markers [AMH, inhibin 

α/β, (FSHR)], and the 

proliferative marker Ki67. 

Stem cells from amniotic fluid 

(AFSC) 

Guan-Yu Xiao et al. 

(2014) 

Transplantation of AFSC into 

POF mice 

The exosomes produced by 

AFSC have anti-apoptotic effects 

on damaged granulosa cells after 

induction of POF in mice 

Embryonic stem cells (ESCs) Bahmanpour et al. (2015) 

Differentiation of mouse 

embryonic stem cells into 

oocyte‐like cells 

The effects of BMP4, retinoic 

acid, and co‐culturing ovarian 

somatic cells on differentiation of 

mouse embryonic stem cells into 

oocyte‐like cells were detected 

 

Endometrial mesenchymal 

stem cells (EnSC) 
Dongmei et al. (2015) 

Transplantation of EnSCs into 

POF mice 

These cells restore ovarian 

function 

javascript:;
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Table 1. The types of stem cells used to treat POF and their results. 

Skin-derived mesenchymal 

stem cells (SMSCs) 
R Sun et al. (2015) 

The effect of activin A on the 

differentiation of SMSCs into 

primordial germ cell-like cells 

after transplantation into POF 

mice 

These cells improve ovarian 

function by increasing the 

expression of meiosis-relative 

genes, such as Stra8, Dmc1, 

Sycp3, and Sycp1. 

Skin-derived mesenchymal 

stem cells (SMSCs) 
Dongmei et al. (2015) 

Transplantation of SMSCs into 

POF mice 

These cells reduce the expression 

of pro-inflammatory cytokines 

TNF-α, TGF-β, IL-8, IL-6, IL-1β, 

and IFNγ and increase the 

expression of oogenesis marker 

genes Nobox, Nanos3, and Lhx8. 

Human menstrual blood stem 

cells (HuMenSCs) 
Lai et al. (2015) 

Transplantation of HuMenSCs 

into POF mice 

As GFP-labeled HuMenSCs was 

measured by live imaging and 

immunofluorescent methods 

indicated that GFP-labeled cells 

were undetectable in mouse 

ovaries. 

Umbilical cord mesenchymal 

stem cell (UCMSC) 
Elfayomy et al. (2016) 

Transplantation of UCMSC into 

POF rats 

These cells can reduce the FSH 

and E2 levels and CASP-3 

expression, and increase the 

antral follicle count and PCNA 

expressions. 

Human umbilical cord 

mesenchymal stem cells 

(UCMSCs) 

Song et al. (2017) 
Transplantation of UCMSC into 

POF rat 

These cells restore ovarian 

function in POF rats. 

Human embryonic stem 

cells(hESCs) 
Jung et al. (2017) 

hESCs differentiation of cells 

into ovarian follicle-like cells 

FLCs) in vitro. 

 

The induction of two RNA-

binding proteins (DAZL and 

BOULE) makes the stem cells, in 

the pluripotency state, enter the 

meiotic stage and produce FLCs. 

Bone marrow mesenchymal 

stem cells (BMMSCs) 
Badawy et al. (2017) 

Transplantation of MSCs into 

POF mice 

These cells after transplantation, 

differentiate into primordial 

follicles. 

Umbilical cord mesenchymal 

stem cells (UCMSCs) 
Ding et al. (2018) 

Transplantation of UC-MSCs on 

collagen scaffold into POF 

patients with a long history of 

infertility 

These cells contribute to an 

effective and practical treatment 

method 

Bone marrow-derived 

mesenchymal stem cells 

(MSCs) 

Chen et al. (2018) Transplantation of MSCs into 

POF rats 

These cells improve ovarian 

function in POF rats 

Mesenchymal stem cells 

derived from the chorionic 

plate (CP-MSCs) 

Li et al. (2018) Transplantation of CP-MSCs into 

POF mice 

Ovarian function was improved 

by monitoring E2 and FSH serum 

levels before and after 

transplantation. 

javascript:;
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Table 1. The types of stem cells used to treat POF and their results. 

Human placenta-derived 

mesenchymal stem cell 

(hPMSC) 

Yin et al. (2018) Transplantation of hPMSCs into 

POF mice 

Ovarian function was improved 

in POF mice by regulation of 

Treg cells and production of 

associated cytokines following 

hPMSCs transplantation. 

Human placenta mesenchymal 

stem cell (hPMSC) 
Zhang et al. (2018) Transplantation of hPMSCs into 

POF mice 

hPMSCs inhibit apoptosis of 

granulosa cells and increase 

AMH expression 

Human menstrual blood stem 

cells (HuMenSCs) 
Noory et al. (2019) 

Transplantation of HuMenSCs 

into POF rat 

These stem cells differentiated 

into granulosa cells and decreased 

the expression level of BAX 

genes unlike Bcl2 in vivo. 

Human menstrual blood stem 

cells (HuMenSCs) 
Manshadi et al. (2019) 

Transplantation of HuMenSCs 

into POF rat 

After transplantation, these cells 

are detected granulosa cells and 

increase the expression of Amh 

(Anti-Mullerian hormone) and 

FSHR (follicle-stimulating 

hormone receptor) and FST 

(Follistatin) genes 

Human umbilical cord-derived 

mesenchymal stem cell 

(hUMSC) 

Lu  et al. (2019) 
Transplantation of UCMSC into 

POF mice 

These cells can reduce the ratio of 

Th1/Th2 cytokines and the 

expression of HOXA10 gene 

increase in the endometrium of 

the uterine.  

Human umbilical cord 

mesenchymal stem cell 

(UCMSC) 

Zheng et al. (2019) 
Transplantation of UCMSC into 

POF rats 

UCMSC improves ovarian 

function by the NGF/TrkA 

pathway in POF rats. 

 

Human amniotic epithelial 

cells (hAECS) 
Zhang et al. (2019) 

hAECS-derived exosomes in the 

POF mouse model inhibit 

ovarian granulosa cell apoptosis 

miR-1246 carried by hAECS-

derived exosomes in POF mouse 

model inhibit ovarian granulosa 

cell apoptosis. 

Bone mesenchymal stem cells 

(BMSCs) 
Sun et al. (2019) 

BMSC-derived exosomes in the 

POF mouse model inhibit 

ovarian granulosa cell apoptosis 

miR-644-5p carried by BMSC-

derived exosomes POF mouse 

model inhibit ovarian granulosa 

cell apoptosis. 

Bone marrow mesenchymal 

stem cells (BMSCs) 
Yang et al. (2019) 

BMSCs-derived exosomes in the 

POF rat model inhibit ovarian 

granulosa cell apoptosis 

BMSCs-derived exosome miR-

144-5p in the POF rat model 

inhibit ovarian granulosa cell 

apoptosis by targeting PTEN. 
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Table 1. The types of stem cells used to treat POF and their results. 

Human placenta‐derived 

mesenchymal stem cells 

(hPMSCs) 

Li et al. (2019) Transplantation of hPMSCs into 

POF mice 

hPMSCs inhibit apoptosis of 

granulosa cells induced by the 

IRE1α pathway in POF mice. 

Human umbilical cord 

mesenchymal stem cells 

(UCMSCs) 

Wang et al. (2020) 
Transplantation of UCMSC into 

POF rats 

UCMSCs upregulated the 

expression of Bcl-2, AMH, and 

FSHR in the ovary of POF rats 

and downregulated the expression 

of caspase-3. 

 

Liu et al. (2012) showed that transplantation 

of CD44+/CD105+ human amniotic fluid cells 

(HuAFCs) into POF mice improves ovarian 

function (58). 

In 2013, Sun et al. examined the therapeutic 

effect of adipose-derived stem cells (ADSCs) on 

POF mice and achieved positive results (59). 

Many studies demonstrated that human 

menstrual blood stem cells (HuMenSCs) can 

play an important role in the treatment of rats and 

mice with POF, as HuMenSCs can improve 

ovarian function. Given that these cells are 

derived from endometrial cells, they can play a 

positive role in the restoration of ovaries than 

other stem cells, as well as inducing the 

expression of granulosa cell-specific genes in the 

ovaries of POF rats (Figure 2) (48, 49, 60-62).  

 
Figure 2. Transplantation of human endometrial mesenchymal stem cells (HuMenSCs) labeled with DiI (Noory et al., 

2019). Nuclei were labeled with Hoechst (A) 
HuMenSCs -Dil-labeled (B). Merged (C). (Fluorescent microscope, scale bar = 200 µm) 

 

Lai et al. investigated the induction of 

intravenously endometrial mesenchymal stem 

cells (EnSC) on POF mice and showed that 

EnSC improved the estrus cycle and reduced the 

evacuation of germline stem cells (GSCs) (62). 

In 2006, Kucia et al. reported that very small 

embryonic-like (VSEL) identified in adult bone  

marrow  can differentiate into different types of 

cells. These cells can act as a good source for the 

regeneration of POF ovaries (63). The same 

experience was obtained in 2016 for 

mesenchymal stem cells (MSC) (64). Another 

study used umbilical cord mesenchymal stem 

cell (UCMSC) to treat POF; four weeks after 

transplantation, an improvement in regulation of 

folliculogenesis and inhibition of CASP3-

induced apoptosis was seen (65). There are many 

articles in this manner (66-71). Lu et al. (2019) 

reported that transplantation of UCMSC on POF 

mice due to the increase in the expression of 

HOXA10 gene in the endometrium of uterine 

and reduce the ratio of Th1/Th2 cytokines [72]. 

In 2018, Badawy et al. reported that the bone 

marrow mesenchymal stem cells (BMMSCs) 

can differentiate into primordial follicles, after 

transplantation to POF mice; and proving this 

mechanism can revolutionize the treatment of 

POF using stem cell therapy (73). 

Guan-Yu Xiao (2016) et al. declared that 

exosomes produced by the AFSC (stem cells 
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from amniotic fluid), like micro-RNA (where 

both miR-146a and miR-10a are very rich) and 

their potential target genes, have anti-apoptotic 

effects on damaged granulosa cells in POF mice 

(74). 

Li  et al. reported that mesenchymal stem 

cells derived from the chorionic plate (CP-

MSCs) have therapeutic effects in the treatment 

of POF mice model (75). In 2019, Hongxing Li 

investigated the effect of human placenta‐

derived mesenchymal stem cells (hPMSCs) 

transplantation on POF mice model. It was 

concluded that through the IRE1α pathway, 

these cells induce a reduction in apoptosis in 

granulosa cells (76). In another study, 

researchers used the same cells and transplanted 

them to POF mice using the regulation of Treg 

cells and the production of associated cytokines 

to improve ovarian function (77). Among the 

studies that examined the effect of 

transplantation of these stem cells on animal 

POF models (70). 

In recent decades, a larger number of studies 

have been done on the in vitro development of 

oocyte-like cells (OLCs), compared with stem 

cells (78-82). The empirical findings in these 

studies provide a new understanding of curing 

female reproductive disorders by neo-oogenesis 

and folliculogenesis. Sun et al. (2015) 

demonstrated that  activin A plays a key role in 

the induction of skin-derived stem cells  into 

primordial germ cell-like cells (83). Similarly, 

Souza (2017) found the effects of bone 

morphogenetic proteins (BMPs) 2 and 4, and 

follicular fluid on the differentiation of these 

stem cells into oocyte‐like structures (84) and 

Lee showed that overexpression of Oct4 in 

porcine ovarian stem cells causes differentiation 

of oocyte-like cells in vitro and ovarian follicular 

formation in vivo (85). 

Asgari et al. showed that human Wharton’s 

jelly-derived mesenchymal stem cells express 

oocyte developmental genes during co-culture 

with placental cells (86). 

Researchers have suggested that skin-

derived  stem cells (SDSCs) can be a good source 

of OLCs because they are very similar to the 

morphology of OLCs, and also, have hormonal 

secretion under gonadotropic stimulations and 

higher expression levels of oocyte-specific 

markers (52, 87-90). Despite this research, there 

have been articles in recent years in which 

human embryonic stem cells (ESCs) and mouse 

embryonic stem cells (ESCs) were differentiated 

into OLCs (78, 91). Other sources of OLCs are 

very small embryonic-like stem cells  (VSELs) 

and micro-RNAs (miRNA); VSELs have also a 

special capability to treat POF (92-94).  

Jung et al. (2016) examined the 

differentiation of human embryonic stem cells 

into late primordial germ cells, meiotic germ 

cells, and ovarian follicle-like cells (FLCs); and 

obtained positive results (78).  

To better understand this disease, we 

included samples of a microscopic morphology 

of the ovary, with H&E staining, after induction 

of POF and a sample treated with stem cell 

therapy in Figure 3 (48). 

 

 
Figure 3. Microscopic ovarian morphology after induction of POF (a). 

Demonstrating ovarian therapy with stem cell therapy (b) (Noory et al., 2019). (H & E staining, scale bar=300 µm). 
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Three-dimensional culture model and tissue 

engineering 

Today, many researchers use tissue 

engineering to rehabilitate fertility in patients 

with POF as a new therapy. Tissue engineering 

is an interdisciplinary science in the field of 

medical sciences in which new tissues are 

created for the development of cells in vitro. The 

combination of scaffolds, cells (stem cells), and 

growth factors form a tissue engineering triad 

that creates polymeric biomaterials and provides 

structural support for cell attachment and 

subsequent tissue and organ development (95, 

96). In the present study, the suitable scaffolds 

used in the treatment of POF in the last decade 

were reviewed. 

In 2017, He et al. used a 3D model of 

hydrogels and ovarian follicles to demonstrate a 

beneficial strategy in the treatment of POF (97). 

Chiti et al. used the fibrin‐alginate scaffold to 

improve the development of secondary follicles. 

The results indicated positive effects of fibrin as 

a suitable scaffold for infertility treatment and 

ovarian function improvement (98). 

Ding et al. reported that transplantation of 

umbilical cord mesenchymal stem cells 

(UCMSCs) on collagen scaffold in POF patients 

with a long history of infertility was effective 

and practical (99). 

 

POF treatment 

In recent decades, various methods such as 

hormone replacement therapy (HRT), ovarian 

tissue freezing, transplantation after treatment, 

and stem cell therapy have been used to treat 

POF (3, 10, 100). So far, different types of stem 

cells have been used to treat this disease (62, 63, 

65, 67, 101). 

Many studies have reported that human 

menstrual blood  stem cells (HuMenSCs) are 

capable of repairing damaged tissues (102, 103). 

These studies aimed to investigate the  effects of 

HuMenSCs transplantation as a treatment 

modality in patients with POF (48, 49, 60, 104). 

In addition, Rongxia Liu et al. confirmed the 

positive effect of human amniotic mesenchymal 

stem cells in the treatment of POF (105).  

In 2020, Tkach et al. declared that small 

extracellular vesicles (sEVs) derived from 

embryonic stem cells (ESCs-sEVs) play a vital 

role in damaged ovaries and exploring the 

underlying molecular mechanisms (106). The 

findings of this study suggest that ESCs-sEVs 

can improve ovarian function in POF patients 

using the PI3K/AKT signaling pathway (107).  

Y Zhao et al. used a variety of stem cells such 

as mesenchymal stem cells (MSCs), bone 

marrow stromal cells, adipose-derived stem 

cells, menstrual blood mesenchymal stem cells, 

and umbilical cord mesenchymal stem cells. 

They had a new approach to deal with a variety 

of female reproductive diseases such as POF, 

polycystic ovary syndrome, endometriosis, 

Asherman syndrome, etc. (108). 

In order to provide better therapeutic cells for 

transplantation to POF patients, Ghahremani‐

Nasab et al. reviewed a series of articles on the 

cultivation of various stem cells on scaffolds 

(109). 

There have been many articles on 

mitochondrial function as the organ playing a 

key role in the ROS production. According to the 

results of these articles, mitochondrial 

dysfunction can be a major factor in the 

development of POF.  Thus, transplantation of 

healthy mitochondria into oocytes by assisted 

reproductive technology (ART) can prevent the 

transmission of POF to the female offspring (31, 

110).  

As it is known, none of the treatment methods 

mentioned so far has been able to completely 

cure POF and the disease stays an obstacle in 

female fertility. Since this review focuses more 

on the transplantation of different types of stem 

cells and was mentioned in the text, not all stem 

cells can be well-differentiated and the treatment 

can be effective; for example, human menstrual 

blood stem cells (HuMenSCs) differentiates into 

granulosa cells, while  Embryonic stem cells 

(ESCs) differentiates into oocyte‐like cells. Lack 

of differentiation of some stem cells into oocytes 

or granulosa cells, culture contamination, lack of 

rapid growth of some stem cells, and the high 

cost of this treatment are some of the 

disadvantages of this technique. 

 

Conclusion 

Stem cell therapy is a novel treatment for 

female infertility, including POF. Stem cell 

therapy along with tissue engineering is an 

effective treatment for POF treatment. This 

review was conducted to assess the association 

between multipotent stem cell therapy and tissue 

engineering. Also, new methods such as 

mitochondrial transmission to oocytes for POF 

treatment were demonstrated and the latest 

articles published in this field were reviewed. 
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