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Abstract 

Background: Recently, cartilage tissue engineering is the best candidate for regeneration of 

cartilage defects. We evaluated the potential of fibrin and PLGA/fibrin scaffolds in providing 

a suitable environment for growth and chondrogenic differentiation of human adipose derived 

stem cells (hADSCs) in the presence of icariin.  

Method: The Three-dimensional (3-D) PLGA scaffold was prepared using the solvent 

casting/salt leaching technique and the hybrid scaffold was fabricated by fibrin. hADSCs were 

isolated from human adipose tissue. 3-D PLGA/fibrin scaffolds were seeded with cultured 

hADSCs and analyzed 14 days later, Monolayer culture was used for the control group. The 

viabilities of cells in different groups were assessed by MTT. The expression of chondrogenic 

related genes, hypertrophic marker and Fibrotic marker were quantified by RT-PCR. 

Results: MTT results show that viability in the control group was significantly higher than 

those in the Fibrin and PLGA/Fibrin groups. Also viability in the PLGA/Fibrin group affected 

by icariin was higher than that in Fibrin group. 

The results of the real-time PCR showed that SOX9, Agg, Coll 2, and Coll 1 gene expression 

in the fibrin and PLGA/fibrin groups were significantly higher than those in the control group. 

Coll 10 gene expression in the fibrin group was higher in comparison to the control group but 

not significantly. type SOX9, Coll 2 and Coll 1 gene expression in the fibrin group was 

significantly lower compared to the PLGA/fibrin group. 

Conclusions: The study reveals that the corporation of PLGA with fibrin is an effective way 

to potentially enhance articular cartilage regeneration of hADSCs in the presence of icariin. 
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Introduction 

Large cartilage defect is a well-known problem for 

orthopedic surgeons because the self-healing capacity of 

cartilage is limited (1). Tissue engineering techniques using 

autologous chondrocyte and biomaterial scaffolds have been 

developed to approach this problem, and several clinical studies 

have shown that cells grown on biomaterial scaffolds can 

integrate into the cartilage defect site and form functional tissue 

(2). However, autologous tissue transplantation can leave donor 

site morbidity. Furthermore, chondrocytes are difficult to 

isolate in humans, replicate slowly and are prone to phenotypic 

dedifferentiation in culture. Also, this can be further affected by 

donor age and healthy status (3). Recently, it has been shown 

that human adipose tissues have mesenchymal stem cells 

(adipose tissue derived stem cells, hADSCs) that can be 

differentiated into multiple cell lineages, including 

chondrocyte. These cells have great in vitro expansion 

properties and are potentially an alternative cell source for 

cartilage transplantation (4). hADSCs have several advantages 

over bone marrow stem cells, including easy accessibility and 

minimal invasiveness. There are also no significant differences 

between the yield, growth kinetics, cell senescence and gene 

transduction of stem cells from adipose tissue and bone marrow 

tissue (5). 

In tissue engineering, three-dimensional (3-D) porous 

biodegradable polymer scaffolds have been of great importance 

for in vivo as well as in vitro tissue regeneration. The primary 

duty of the scaffold is that it is believed to deliver specific cells 

into target sites in the body, serving as a mechanical support 

from the physiological stresses. For cartilage tissue 

engineering, an ideal scaffold should encourage the production 

of cartilage-specific extracellular matrix (ECM), type II 

collagen (Coll 2) and aggrecan (Agg), by the transplanted cells, 

and gradually degrade with the growth of regenerating cartilage 

tissue (6).  

During the past two decades, poly lactic-co-glycolic 

(PLGA) biopolymer has been used as one of the most 

interesting candidates for fabrication of scaffolds needed in 

tissue engineering research (7). PLGA is a biodegradable and 

biocompatible polymer with optimal mechanical properties and 

it has been approved by the U.S. Food and Drug Administration 

(8). However, it has low hydrophilic properties and low water 

absorbency and slow degraded (9). 

Fibrin is a kind of protein hydrogels derived from 

fibrinogen, which can be harvested and isolated from patient’s 

autologous blood. It is widely used in the field of medicine and 

materials science, such as drug delivery and cell carrier, 

haemostatic glue and wound repair, and tissue engineering (10, 

11). Previous researchers found that fibrin could maintain the 

phenotype and function of chondrocytes (12, 13). Recently, cell 

loading in the fibrin gel was also performed, resulting in a better 

cell distribution and higher cell seeding efficiency (14). Yet its 

drawbacks of fast degradation and poor mechanical strength 

limit its applications as scaffolding materials alone. However, 

weak mechanical properties and fast degradation of fibrin have 

been problematic and have limited its application as a scaffold 

for cartilage tissue engineering (10, 15). 

A hybrid scaffold was manufactured by filling fibrin into 

PLGA sponge, which integrated both the advantages of better 

mechanical performance of PLGA and biological performance 

of fibrin (11). Chondrocytes distributed even in the hybrid 

scaffold with a round morphology alike in their native matrix, 
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and thereby could maintain better with their phenotype in terms 

of GAG secretion during an in vitro culture (11). 

 

Herb Epimedium (HEP) is a widely used traditional 

Chinese herbal medicine for arthritis in China, Japan and Korea 

(16). Icariin (Ica, Molecular weight 676.65) is the major 

pharmacological active constituent of HEP (17). Icariin could 

regulate the anabolism of osteoblasts through the up-regulation 

of BMP-4, BMP-2 and SMAD4 expression (18). In bone tissue 

engineering, icariin has been proved as an efficient accelerator. 

Some reports indicated that the in vivo osteoinductive effect of 

icariin might be expressed through the process of endochondral 

ossification (19). Some other reports proved that icariin was a 

safe and strong chondrocyte anabolic agent which could affect 

the proliferation of chondrocytes and reduce the degradation of 

extracellular matrix (ECM) (17). These suggest that Icariin may 

be a potential accelerator for the chondrogenesis in cartilage 

tissue engineering. 

Due to the inadequacy of the existing methods for the 

treatment of cartilage injuries and on the other hand the 

importance of scaffolds and growth factors in tissue 

engineering, this study was designed to evaluate the potential of 

fibrin and PLGA/fibrin scaffolds in providing a suitable 

environment for the growth and chondrogenic differentiation of 

human adipose derived stem cells (hADSCs) in the presence of 

icariin. 

 

Materials and Methods 

Fabrication and characterization of the hybrid scaffold 

3-D PLGA (48/52wt% poly (lactide)/ poly (glycolide) 

scaffold have been prepared via solvent casting and particulate 

leaching (SCPL) techniques using methylene chloride, as 

previously described (20). Briefly, polymer/ solvent solution 

(8% w/v concentration of PLGA in methylene chloride) were 

casted in cylindrical silicon moulds (9 mm in diameter and 3 

mm in height) which was filled with sodium chloride salt 

(NaCl) particles (approximately 180 µm particle size) (Sigma) 

as porogen particle. Then, the scaffolds were dried in room 

temperature for 12 h. In order to leach out the NaCl particles, 

samples were immersed (soaked) in deionized water for 3rd in 

2 days to produce highly porous structure. 

 

Fibrin preparation 

Fresh frozen plasma (FFP) was used for thrombin 

preparation. A bag of FFP was obtained from the Blood Bank 

of Isfahan Province (Isfahan, Iran) and its content melted in a 

water bath at 37 °C for 10 min. Then, the mixture of FFP (16 

ml) with calcium gluconate (10 ml) was prepared and casted in 

falcon tube in order to be incubated for 90 min. Then, the 

mixture centrifuged with 2200 rpm for 10 min. After 

centrifugation, the supernatant clear liquid accumulated in 

falcon tube was decanted for thrombin preparation. Fibrinogen 

was extracted from cryoprecipitated antihaemophilic factor 

(AHF) pocket by heating it in bain marie for 20 min at 37 C. 

Finally, the equal mixture amount of thrombin and fibrinogen 

led to fibrin clot formation (20, 21). 

 

Isolation& proliferation of hADSCs and Cell culture on 

fibrin and PLGA/fibrin scaffolds 

Subcutaneous adipose tissue samples were collected in 

falcon containing phosphate buffered saline (PBS) from four 

patients (30-50 years old) who filled the consent form before 
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undergoing cesarean section or abdominal surgery in Isfahan 

Rain's beauty clinic. All samples were digested with 0.075% 

collagenase type I (Sigma) and incubated for 30min at 37°C in 

the lab. Next, DMEM low glucose (Sigma) containing 10% 

FBS (Invitrogen) was added for enzyme inactivation before 

being centrifuged (1200rpm, 15min). Removing supernatant, 

cultured cell pellet in 25 cm2 flasks with DMEM LG, 10% 

FBS, 1% penicillin and streptomycin (Gibco) and incubated 

with 5% CO2, 37°C. The medium was changed every 4 days. 

When the cells reached 80% confluence, detached with 0.05% 

trypsin/0.53 mM ethylenediaminetetraacetic acid (Sigma) and 

passage P3 cells were seeded in fibrin and PLGA/fibrin 

scaffolds. Monolayer culture was considered as the control 

group (4, 22). For both groups, chondrogenic medium 

supplemented with icariin (1 × 10-5 M) was used (1). The 

scaffold was sterilized with 70% ethanol for 60 min and 

disinfected via ultraviolet light for 2hrs and scaffolds were 

washed with PBS. The sterile scaffold was kept in a 240- well 

cell culture plate and finally PLGA scaffolds were soaked in 

chondrocytes-fibrin suspension (1x106 cells/ scaffold) and 

polymerized by dropping thrombin-calcium chloride (CaCl2) 

solution (23). 

 

MTT assay (3, 4, 5-dimethylthiazol-2-yl)-2,  

5- diphenyltetrazolium-bromide) 

The viability of hADSCs was assessed by the MTT assay 

on the 14th day. At first, the medium of each well was removed, 

rinsed with PBS, and replaced with 400 µl serum free medium 

and a 40 µl MTT solution. Next, it was incubated at 37°C, 5% 

CO2 for 4 hrs. The medium was discarded and 400 µl DMSO 

(Sigma) was added to each well, and was incubated in dark for 

2 hrs. Next, 100 µl of the solution was transferred to a 96-well 

plate and the absorbance of each well was read at 570 nm with 

ELISA reader (Hiperion MPR4). The assays were performed 

in triplicate (24, 25). 

 

RNA isolation and real-time quantitative 

Real-time quantitative RT-PCR was performed to 

quantitatively estimate the mRNA expression of type II 

collagen (coll2), aggrecan(Agg) and SOX9, type X collagen 

(coll10) and type I collagen (coll1) genes in hADSCs at 

different groups. Total RNA was isolated by RNeasy mini kit 

(Qiagen), treated by RNase-free DNase set (Qiagen) to 

eliminate the genomic DNA. The RNA concentration was 

determined using a biophotometer (Eppendorf). Total RNA 

(100 ng) was reverse-transcribed to cDNA by using 

RevertAid™ First Strand cDNA Synthesis Kit (Fermentas) 

according to the manufacturer’s instructions. The Maxima 

SYBR Green Rox qPCR master mix kit (Fermentas) was used 

for real-time RT-PCR. Primer sequences are shown in Table1. 

Real-time PCR reactions were performed by using the 

Comparative Ct (∆∆Ct) method. The relative expression level 

of genes was computed by calculating the ratio of the amount 

of genes to that of endogenous control (GAPDH). Melting 

curve was produced to determine the melting temperature of 

specific amplification. These experiments were carried out in 

triplicate and were independently repeated at least 3 times (25). 
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Table1. Gene sequence of primers 

Primer sequences 

(forward and reverse) 

Gene 

CTGGTGATGATGGTGAAG collagen II-F 

CCTGGATAACCTCTGTGA collagen II –R 

TTCAGCAGCCAATAAGTG sox-9 –F 

TTCAGCAGCCAATAAGTG sox-9 –R 

AGAATCCATCTGAGAATATGC collagen x –F 

CCTCTTACTGCTATACCTTTAC collagen x – R 

CCTCCAGGGCTCCAACGAG collagen I – F 

TCAATCACTGTCTTGCCCCA collagen I – R 

GTGGGACTGAAGTTCTTG Aggrecan-F 

GTTGTCATGGTCTGAAGTT Aggrecan-R 

AAGCTCATTTCCTGGTATG GAPDH-F 

CTTCCTCTTGTGCTCTTG GAPDH-R 

 

Statistical analysis 

The comparison of MTT results and gene expression 

among groups was performed using Independent-samples t- 

test and analysis of variance. Pvalue < 0.05 was considered as 

statistically significant level.  

 

Results 

The morphology of human adipose derived stem cells: 

In the study of living and not stained cells using invert 

microscope, they were determined as small cells with little 

cytoplasm and elliptic central core (Fig. 1).  

 
 

Figure1. Image of living mesenchymal stem cells isolated from human adipose tissue produced by invert microscope×40  

 Spindle cells in the third passage are visible 
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Cell viability and proliferation in different groups: 

MTT results on the fourteenth day show that viability in the 

control group is significantly higher  

than that in Fibrin and PLGA/Fibrin groups but not 

significantly (p>0.05,Fig. 2). 

 

 

 
Figure 2. Comparison of MTT assay results between control, PLGA and PLGA/Fibrin groups 

a: Difference between control and Fibrin groups 

b: Difference between control and PLGA/Fibrin groups 

c: Difference between PLGA and PLGALFibrin groups (P≤0.05) 

 

Gene expression in different groups 

The results of the real-time PCR showed that SOX9, Agg, 

Coll 2, and Coll 1 gene expressions in the fibrin group were 

significantly higher (P<0.05) than the same values in the control 

group. Coll 10 gene expression in the fibrin group, was higher 

than that in the control group but not significantly (p>0.05). also 

SOX9, Agg, Coll 2, Coll 10 and Coll 1 gene expressions in the 

PLGA/fibrin group were significantly higher (P<0.05) than the 

corresponding values in the control group. 

 The results of the real-time PCR indicated that type SOX9, 

Coll 2 and Coll 1 (as fibrous marker) gene expressions in the 

fibrin group were significantly lower than those in the 

PLGA/fibrin group (P<0.05, Fig. 3). 

 

a 
b c 

60

62

64

66

68

70

72

74

76

78

80

Control Fibrin PLGA/Fibrin

R
el

at
iv

e 
Q

u
an

ti
fi

ca
ti

o
n

MTT



Fibrin and PLGA/Fibrin Scaffolds Comparison Hashemibeni, et al 

20 

 

 

 

 
Figure 3. Comparison of Real-time Polymerase chain reaction results among control, PLGA and PLGA/Fibrin groups 

a: Difference between control and Fibrin groups 

b: Difference between control and PLGA/Fibrin groups 

c: Difference between PLGA and PLGA/Fibrin groups (P≤0.05) 

 

Discussion 

As cartilage does not have blood vessels and has limited 

ability for self-healing, repairing a damaged cartilage requires 

efficient methods (1). In this study, fibrin/hADSCs and 

PLGA/fibrin/hADSCs constructs loaded with icariin were 

fabricated. Tissue engineering techniques based on the 

utilization of stem cells are useful techniques with great 

potential in the treatment of such injuries. One of the most 
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important factors in successful tissue engineering is selecting an 

appropriate scaffold to facilitate cell growth and differentiation. 

As a result, in cartilage tissue engineering, an ideal scaffold 

seems necessary to maintain the chondrocyte phenotype in the 

differentiation process (26). Most of the tissue engineering 

studies that are based on using stem cells utilize chemical 

factors (such as growth factors) or signals for chondrogenic 

differentiation (25). Thus, less attention has been paid to the 

importance of scaffolds as influential factors in the regulation 

of tissue growth and differentiation. Since in this study, the 

differentiation capacity of hADSCs varied in different scaffold 

selections, it was concluded that scaffold is an important factor 

in the stem cell differentiation process. 

It is necessary to provide enough space and sufficient time 

for cells to migrate, proliferate, and differentiate for cartilage 

restoration by a tissue engineering technique. The fibrin alone 

has been diversely used as an injectable scaffold. However, the 

commercially available fibrin has lower mechanical strength, 

tend to disintegrate in vitro and in vivo after several days, and 

almost completely dissolve within 3-4 weeks (27, 28). Even 

after optimization of the gelling parameters that determine the 

gel stability (27), the obtained fibrin is still not stable enough for 

long-term cartilage repair. In the present study, PLGA was 

compounded with fibrin for the purpose of enhancement of 

mechanical strength and stability. 

It has been demonstrated that this composite scaffold, 

indeed, has a stronger mechanical strength (29). Intrinsically, 

the chemical structure of PLGA is different with that of fibrin. 

PLGA is a synthetic polyester with a hydrophobic and bioinert 

surface, whereas fibrin is highly hydrophilic, making them 

thermodynamically incompatible. Surface modification of the 

PLGA, for example by fibrin coating, is a simple but effective 

way to obtain a compatible composite. Here, the surface 

aminolysis (30, 31), following glutaraldehyde (GA) coupling 

was applied to covalently anchor the fibrinogen. In this process, 

part of the surface ester groups of PLGA is converted into -NH2 

groups, which are further converted into aldehyde groups by 

large amount of glycolic acid. Mechanical strength of the 

hydrogels, especially at a dynamic state, is of critical 

importance for practical applications. This is most typical for 

cartilage restoration, since the cartilage is inevitably suffered 

from the dynamic force. Fibrin has remarkable and unique 

viscoelastic properties (32). Integrin binding sequence of 

arginine-glycine-aspartic acid existing in fibrin is a stimulating 

factor for cell binding and growing. Some studies reported that 

in cartilage tissue engineering, fibrin stimulates coll2 and Agg 

(33). Evidence show that chondrogenesis of PLGA/Fibrin 

compared to PLGA is recognized significantly higher in 

expression and accumulation of coll2 and SOX9 genes 

compared to Agg, coll1 and coll10. Cell viability in 

PLGA/Fibrin group affected by icariin, was higher than fibrin 

group affected by icariin but not significantly, proliferation of 

chondrocytes or chondroprogenitors indicated by MTT assay. 

Similar finding has been reported in the previous assessment of 

osteogenic potential utilizing human periosteum-derived 

progenitor cells and fibrin gel immobilization technique in 

PLGA scaffold (23). Similar to the present study, Lee et al. also 

reported that fibrin provides more uniform chondrocytes 

distribution during cell seeding via histology in macro-porous 

polyurethane scaffold (14). 

 

Conclusion 

Our study showed that PLGA/fibrin scaffold, in 

comparison to fibrin scaffold, can be considered as an 

appropriate scaffold for differentiation of hADSCs by icariin 

due to the higher expression of chondrogenic differentiation 

markers, including collagen II and SOX9. This scaffold can be 

used in animal studies for cartilage tissue engineering. 
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