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Abstract 

Background: Differentiation of Embryonic Stem Cells into Oocyte-like cells in vitro is 

challenging. Successful derivation of oocyte from stem cells can provide an alternative source 

for curing ovogenesis problems. The current study aims to demonstrate a new protocol with 

two different types of media for differentiating embryonic stem cells (ESCs) into oocyte-like 

cells (OLCs). 

Methods: After culturing mouse ESCs, embryoid bodies (EBs) were generated from 

ESCs by hanging drop (HD) method. To final differentiation of oocyte-like cells 

(OLCs), the EBs were cultured in two different types of media for 12 days (first 7 

days EBs were cultured in in vitro maturation diluted in Granulose Cell- 

Conditioned Medium and Follicular Fluid [1:1:1] followed by 5 days of culture in 

in vitro maturation diluted in uterine condition medium [1:1] ).  

Results: According to the MTT test, the viability rate increased in the experimental group 

compared to the control EBs cultured alone. Expression of Oct4, as a pluripotency marker, 

decreased during the differentiation process of EBs in the experimental group. Co-culturing 

of EBs with our mentioned protocol increased germ cell markers (Stella and Mvh) and 

increased Oocyte-specific markers (ZP1, Figα and GDF9). 

Conclusion: Our study introduces a promising in vitro protocol for achieving successful 

oogenesis through creating interactions of EBs with granulosa cells and uterine condition 

medium. 
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Introduction 

Embryonic stem cells (ESCs) are achieved from the inner 

cell mass of blastocyst stage of embryos before implantation 

(1). ESCs are pluripotent cells that can be differentiated into 

different cell types (2). In addition to differentiation of ESCs 

into the cells of three germ layers, ESCs can be differentiated 

into primordial germ cells (PGCs), sperm and oocyte-like cells 

(3). The differentiation ability of ESCs into both somatic cells 

and germ cells has been confirmed in in-vivo and in-vitro 

studies (4-6). At first, PGCs must be generated from ESCs, and 

then, PGCs are differentiated into oocyte and sperm through an 

important process which is called specification.  

Providing oocyte from ESCs can improve the therapeutic 

strategies in the field of oogenesis issues (3, 7). The accurate 

procedure for inducing differentiation of ESCs into oocyte- like 

cells has not been fully elucidated, yet (8). In the body, 

complete ovogenesis occurs by interacting of granulosa cells, 

as somatic cells and oocyte, as germ cells (9). Also, this 

interaction should be provided in culturing oocytes conditions. 

ESCs start differentiation by generating a round structure which 

is called embryoid body (EB). EB stage contains both 

differentiated and undifferentiated cells that can finally 

differentiate into the different cell types (10, 11).  

Several studies have confirmed the essential role of 

granulosa cells on differentiation of PGCs into oocyte (9, 

12). 

But, the role of granulosa cells improved with uterine 

condition medium on differentiation of ESCs into 

oocyte-like cells has not been evaluated in an in-vitro 

study. The aim of the current study was to evaluate the 

effects of co-culturing of granulosa cells improved with 

uterine condition medium on differentiation of ESCs into 

oocyte-like cells.  

 

Materials and Methods 

ESC Culture and Embryoid Bodies  

In this experimental study, mouse ESCs, CGR8 were 

cultured on gelatin (0.1% Sigma) –coated flasks (Falcon) in 

ESC medium, containing DMEM (Gibco) with 15% fetal calf 

serum (Gibco), LIF (1,000 IU/ml; Chemicon), 1% w/w non-

essential amino acids (Gibco), 0.1 mM β- mercaptoethanol 

(Sigma), 2 mM L-glutamine (Gibco) and 1% w/w 

penicillin/streptomycin (Gibco) at 37°C and 5% CO2 (13). The 

medium was exchanged every day. 

For creation of embryoid bodies (EBs) from ESCs by 

hanging drop (HD) protocol with EB medium (ESC medium 

without LIF), a concentration of 2000 cells per 20 μl for 2 days 

was utilized (14-17). Then, EBs were seeded in individual wells 

of a low-attachment plate with induction medium (IM) and 

differentiation strategy was employed. 

 

Differentiation Induction Protocol 

To final differentiation of mESCs into oocyte-like cells 

(OLCs), the EBs were cultured in two different types of media 

for 12 days. For the first seven days EBs were cultured in In 

Vitro Maturation (IVM medium) diluted in Granulose Cell- 

Conditioned Medium (GCCM) and Follicular Fluid (FF) 

[1:1:1] followed by five days of culturing in in Vitro Maturation 

(IVM medium) diluted in uterine condition medium (UCM) 

[1:1] (uIVM).  

 

Granulose Cell- Conditioned Medium 

The granulosa cells of newborn mouse ovaries were 

cultured according to the method by Qing T (12). The 

granulose cells were grown to 80% confluence of the culture 

flasks. The cells were treated with mitomycin C (Sigma) for 2 

hours and then, conditioned medium were collected every two 

days, filtered and sorted in – 20ºC until use.  
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Follicular Fluid 

Adult mouse ovaries were obtained at the animal house of 

Mazandaran University of Medical Sciences and follicular fluid 

was collected by aspiration after sedimentation of cumulus 

oocyte complexes (COCs) and filtered and sorted in –20ºC until 

use. 

 

IVM medium 

IVM medium was composed of MEMα medium 

(Invetrogen) supplemented with 1U/ml pregnant mares  ̀serum 

gonadotropin (PMSG), 0.23 mM Sodium pyruvate and 

1mg/ml BSA.  

 

Pseudopregnancy Induction 

NMRI male mice, aged 6-8 weeks, were vasectomized and 

after recovery were used for induction of pseudopregnancy. 

NMRI female mice, aged 6-8 weeks, were kept under 12 hour 

light/12 hour dark condition. Pseudopregnancy was induced in 

a natural cycle. Estrus cycle was determined by daily vaginal 

smears. Immediately after that, female mice were caged 

individually with a vasectomized male of proven sterility 

overnight. The following morning was considered as the first 

day of pseudopregnancy if a copulatory plug was observed.  

 

Preparation of Uterine Cell Cultures 

On day 4 of pseudopregnancy, the mice were killed by 

cervical dislocation and the uterus with its horns was removed 

under sterile conditions for culture. The tissue was cut into 

sections and was placed in 0.05% protease (Protease IV: Sigma 

Pharmaceuticals) in DMEM medium for 20 min at 37°C and 

5% CO2. 

 Then, the tissue suspension was passed through a 120-pm 

pore size wire sieve to separate digested tissues from undigested 

tissues. Then, the cells were suspended in 5 ml DMEM 

medium plus 10% fetal calf serum (FCS, Gibco). 

Subsequently, the cells were centrifuged at 600g and the 

supernatant was disposed. The uterine cells were cultured on 

gelatin (0.1% Sigma) –coated 25-ml plastic flasks (Falcon, 

Becton Dickinson) in DMEM (Gibco) supplemented with 10% 

FCS and 1% w/w penicillin/ streptomycin (Gibco). The Cells 

were allowed to reach to 80% confluence of the culture flasks. 

For inactivation, the cells were treated with mitomycin C 

(Sigma) for 2.5 hours and then, the uterine conditioned medium 

(UCM) was collected every two days, filtered and sorted in – 

20ºC until use.  

 

MTT Assay  

Cell viability was evaluated based on mitochondrial 

function of living cells by reduction of tetrazolium salt (MTT, 

3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2Htetrazolium 

bromide) at 4 different time points (2nd, 4th, 6th and 8th day) in 

96-well microplates (Falcon). Briefly, 4.8 × 103 cells per 200 

ml medium was seeded into each well of a 96-well micro liter 

plate for 24 hours at 37°C in 5% CO2. Then, the wells were 

washed with PBS, and 50 μl of 1 mg/ml MTT solution (Sigma-

Aldrich) constituted in PBS was poured to each well and the 

cells were incubated for 4 hours at 37°C. After incubation, the 

culture medium was removed and 50 μl of 100 % Dimethyl 

sulfoxide (DMSO) was mixed and placed on a shaker for 10 

min. The results were analyzed by spectrometric 

absorbance at 570 nm (PerSeptive Biosystems, 

Framingham, Massachusetts, USA). 

 

Immunocytochemistry 

The EB cells were washed with PBS and fixed in 4% PFA 

for 30 min and permeabilized in Tris buffered saline (TBS) with 

0.1% Triton X-100 for 10 min. Blocking the nonspecific 

binding of the primary antibody was performed by incubation 
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of the EB cells in 0.5% Bovine Serum Albumin (BSA, Sigma) 

in TBST as a blocking solution (BS) for 30 min at RT. The EB 

cells were incubated with primary antibodies Ddx4/Mvh (Goat 

polyclonal IgG, ab566, Abcam system, diluted 1:1000 in BS) 

and GDF9 (Goat polyclonal IgG, Santacruze, SC- 12244, 

diluted 1:1000 in BS) overnight at 4°C. Further incubation with 

the appropriate secondary antibodies Phycoerythrin (PE) -

conjugated Donkey polyclonal secondary antibody to Goat IgG 

(ab976, Abcam system, diluted 1:100 in BS) and FITC- 

conjugated Donkey polyclonal secondary antibody to Goat IgG 

(ab975, Invitrogen, diluted 1:100 in BS) were performed in 45 

min at RT in darkness and the EB cells were washed 8 times, 

30 min each in TBST. Nuclei were detected by DAPI (sigma) 

staining. Images were taken with an Olympus phase contrast 

microscope (BX51, Olympus, Tokyo, Japan) (18).  

 

RNA extraction and RT- PCR 

Total RNA extraction from cell cultures was performed by 

Qiazol lysis Reagent (Qiagen), and then 5μg RNA from each 

sample was transcribed into cDNA by using reverse 

transcriptase kit (Fermentas), according to the manufacturers’ 

instructions. Primers were designed by AlleleID software 

version 7.6 (Primer Biosoft, Palo Alto, USA). Primer 

sequences are shown in table 1. The temperature profile in 

qRT-PCR amplification was (1) 95°C for 10, (2) 40 cycles of 

95°C, 30 seconds; 60°C, 45 seconds; and 72°C, 45 seconds and 

(3) 72°C for 7 min for the final extension. The ΔΔCt method 

was used for rating the relative quantification of gene 

expression. 

 

Statistical analysis 

 Statistical analysis was conducted by using one-way 

analysis of variance (ANOVA) test, followed by Tukey 

post-hoc test and through SPSS software for Windows, 

version 23. Differences between samples were 

considered statistically significant at P<0.05. 

Table 1. The sequence of primers 

Gene Primer (forward/reverse) Significance 

Oct4 5'- CTCGAACCACATCCTTCTCT -3' Pluripotency marker 

 5'- GTTCTCTTTGGAAAGGTGTTC -3'  

Stella 5'- TGAAGAGGACGCTTTGGA -3' Germ cell marker 

 5'- CTTTCAGCACCGACA ACA -3'  

Mvh 5'- CGGAGAGGAACCTGAAGC -3' Germ cell marker 

 5'- CGCCAATATCTG ATGAAGC -3'  

ZP1 5'- CCTCTCACCCTCTGTGGAACAG -3' Oocyte-specific marker 

 5'- GAGCATGTATCAGACCCAGAGG -3'  

Figα 5'- CCGTTTCTACCACAGAGCAGG -3' Oocyte-specific marker 

 5'- TTCTTCAAGCCACTCGCACA -3'  

GDF9 5'- CCAGCAGAAGTCACCTCTACAA -3 Oocyte-specific marker 

 5'- ACATGGCCTCCTTTACCACA -3  

GAPDH 5'- ACCACAGTCCATGCCATAC -3' Internal Control 

 5' - TCCACCACCCTGTTGCTGTA -3'  
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Results 

In this study, we used co-culture systems with two different 

types of media to mimic in vivo development of differentiating 

mouse ESCs into oocytes-like cells. In the first step, ESCs 

formed EBs to create germ cells. The CGR8 mouse ESC, was 

cultured and EBs were created at the end of passage 3 by 

hanging drop method (Figure 1). 

 

 

Figure 1. Cell morphology of primary cell culture of CGR8 (A) and morphology of EBs after the end of passage 3(B), Scale bars: 50 µm 

In the experimental group, differentiation induction 

protocol was composed of the first seven days culturing of EBs 

in IVM medium diluted in Granulose Cell- Conditioned 

Medium followed by five days of culturing in IVM medium 

diluted in uterine conditioned medium. Cell viability was 

evaluated by using MTT assay in 4 different time points (2nd, 

4th, 6th and 8th day). As shown in figure 2, cell viability increased 

in the experimental group compared to the control group at all 

4 mentioned times. Except the 4th day, the increase in the rest 

of the days was significant. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The viability rates in control (Con) and experimental (Exp) groups at days 2, 4, 6, 8 (P≤0.05), significance differences have been specified by 

star sign. 

 

 

https://www.sciencedirect.com/topics/neuroscience/cell-viability
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Expression of Ddx4/Mvh and GDF9 proteins were 

evaluated as described in EBs after differentiation induction 

strategy. Our Immunocytochemistry staining showed that Mvh 

positive cells were observed in almost all stages of induction 

protocol (Figure 3). Also, GDF9 was expressed only at the end 

stage of the induction protocol (D12) (Figure 4). 

 

Figure 3. Immunocytochemistry analysis of co-culture cells to show Mvh positive cells 

 (A) Mvh positive cells, (B) DAPI and (C) Merge, scale bar approximately 50 µm 

 

 

Figure 4. Expression of specific oocyte protein was analyzed by immunocytochemistry.  

(A) GDF9, (B) DAPI and (C) Merge, scale bar approximately 20 µm 

 

We performed RT-PCR analysis to evaluate the expression 

of pluripotency marker (Oct4), germ cell markers (Stella and 

Mvh) and oocyte-specific markers (ZP1, Figα, and GDF9) of 

the experimental and control groups (Figure 5). Our data 

showed that the expressions of Oct4, as a pluripotency marker, 

decreased during the differentiation process of EBs. 

Examination of the expression of Stella gene, as a germ cell 

marker, showed that in the experimental group the mean 

normalized expression of this gene was higher than that in the 

control group, at the whole time of the EBs differentiation 

progress. Expression of Mvh gene was observed just in the 

experimental group, with the highest amount at day 6th. Oocyte-

specific markers ZP1, Figα and GDF9 were expressed just in 

the experimental group, and they had no expression in the 

control group. The highest expression of Figα and GDF9 

happened at the end stage of the induction protocol (12th day) 

with the mean normalized expressions of 2.87 and 2.89 

respectively. The highest expression of ZP1 happened at the 

mid-point of differentiation induction period (6th day) with the 

mean normalized expression of 3.21. 
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Figure 5. Mean normalized expressions of RT-PCR analysis for Oct4, Stella, Mvh, ZP1, Figα and GDF9 in the experimental (Exp) and control (Con) 

groups 

 The significance differences in D12 have been shown by different signs. 

 

Discussion 

Results of our study revealed a new promising approach for 

differentiating ESCs into oocyte-like cells that depends on 

culturing EBs in granulosa cell conditioned medium and 

uterine condition medium. After 12-day of induction protocol 

(first 7 days in IVM with granulosa cells and 5 following days 

in IVM with uterine conditioned medium), co-cultured cells 

expressed oocyte-specific markers (ZP1, Figα and GDF9), 

while in the control group that EBs were cultured alone no 

oocyte-specific marker was expressed. Our induction protocol 

was similar to the in-vivo condition because in both of these 

conditions, at first stage PCGs are generated from blastocyst 

and then PGCs are transformed into oocyte. We improved our 

induction protocol by either co-culturing following 5 days in 

uterine condition medium. In our study, viability rate in the 

experimental group was higher compared to the control group 

which can be caused by cell to cell contact and anti-apoptoic 

effects of granulosa cells. 

Co-culturing of EBs with our mentioned protocol increased 

germ cell markers (Stella and Mvh) compared to the control 

group that EBs were cultured alone. Mvh expression was 

observed just in the experimental group while in the control 

group Mvh was not expressed. In our study, expression of Oct4, 

as a pluripotency marker, downregulated in both control and 

experimental groups. However, downregulation of Oct4 in the 

experimental group was more than the control group, which 

indicated the higher differentiation in the experimental group 

following induction protocol. Our immunocytochemistry 

results confirmed the gene expression of the two markers, 

GDF9 and Mvh. Expression of Mvh protein was observed in 

the experimental group, particularly at the beginning stage of 

induction protocol. While, expression of GDF9 protein was 

occurred at the end stage of induction protocol. Mvh positive 

cells are the indicator of germ cell colonies, while GDF9 

positive cells are the indicator of oocyte differentiation and 
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confirme the successful differentiation of EBs into oocyte-like 

cells. 

Our study is compatible with previous studies that reported 

the valuable role of granulosa cells in germ cell development 

and oocyte differentiation (11, 19-22). The precious role of 

granulosa cell for oocyte differentiation is introduced by 

increasing cell to cell contact, providing essential ingredients, 

secreting paracrine signals and decreasing apoptosis (23-25). 

Qing et al. (2007) reported that after 10 days of co-culturing 

EBs with ovarian granulosa cells, germ cell markers (Mvh and 

SCP3) and oocyte-specific genes (Figa, GDF-9, and ZP1-3) 

were expressed in their experimental group and indicated that 

granulosa cells were effective in inducing the differentiation of 

ESCs into oocyte-like cells (12). Also, Parvari et al. (2016) 

demonstrated that co-culturing of ovarian stem cells with 

granulosa cells induced differentiation into oocyte-like 

structure (9). In another study, the roles of two regulatory 

proteins (DAZL and BOULE) which exit human embryonic 

stem cells from pluripotency and enter into meiosis and 

differentiate into ovarian follicle-like cells were introduced (26-

30). Also, the positive role of Retinoic acid in enhancing germ 

cells differentiation from human embryonic stem cells has been 

reported (31-35). In another study, ESCs were pre-treated with 

BMP4 and then exposed to retinoic acid, which revealed 

upregulation in the expression of germ cell marker and oocyte 

maturation markers (5, 34-36). 

We conclude that the use of 12-day induction protocol (first 

7 days in IVM with granulosa cells and 5 following days in 

IVM with uterine conditioned medium) can support 

differentiation of mouse ESCs cells into oocyte-like cells. 

Viability rate of cells and gene expression of germ cell marker 

and oocyte-specific marker confirmed the efficiency of our 

induction protocol. But, still there is a need for further studies to 

access successful differentiation protocol for generating 

functional oocytes in vitro. 
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