Antidiabetic and Antioxidant Properties of Sea Urchin Echinometra mathaei from the Persian Gulf

Document Type : Short Communication


1 Professor of Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran

2 Department of Biochemistry, Fars Sciences and Research Branch, Islamic Azad University, Shiraz, Iran

3 Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

4 Professor of Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran


Background: The aim of the present study was to evaluate the inhibition of α-glucosidase and antioxidant properties of different tissues of sea urchin Echinometra mathaei.
Methods: α-glucosidase inhibition was determined using p-Nitrophenyl-a-D-glucopyranoside as a substrate, and the antioxidant properties were evaluated by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS),1,1-diphenyl-2-picrylhydrazyl (DPPH), and nitric oxide radicals scavenging. Also, antioxidant potential was evaluated by the ferric reducing antioxidant power (FRAP) method.
Results: Among the studied tissues, the highest α-glucosidase inhibition was revealed by the ethyl acetate extract of the shell and Aristotle’s lantern (IC50 = 3.7 and 4 mg/mL, respectively). Shell had the highest ABTS (IC50 = 183) and DPPH (IC50 = 208 μg/mL) radicals scavenging, respectively. And, gonad had the highest antioxidant potential by the FRAP method (1140 μg ASA/mg) and NO radical scavenging (70.68%), respectively.
Conclusion: Antidiabetic potentials of the ethyl acetate extracts of sea urchin tissues suggest that these extracts can be used as antidiabetic drugs.


  1. Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J Agr Food Chem 2009; 57(5):1655-66.
  2. Grisham M. Chemistry and cytotoxicily of reactive oxygen metabolites. Dig Dis Sci. 1988; 33:150-5.
  3. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, orconsequence?Lancet 1994;344(8924):721-4.
  4. Maxwell SR. Anti-oxidant therapy: does it have a role in the treatment of human disease? Expert Opin Investig Drugs 1997;6(3):211-36.
  5. Holman RR, Cull CA, Turner RC. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (UK Prospective Diabetes Study 44). Diabetes Care 1999;22(6):960-4.
  6. Kim KY, Nam KA, Kurihara H, Kim SM. Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 2008;69(16):2820-5.
  7. Kimura A, Lee JH, Lee IS, Lee HS, Park KH, Chiba S, et al. Two potent competitive inhibitors discriminating α-glucosidase family I from family II. Carbohydr Res 2004;339(6):1035-40.
  8. Ciotta L, Calogero AE, Farina M, De Leo V, La Marca A, Cianci A. Clinical, endocrine and metabolic effects of acarbose, an α-glucosidase inhibitor, in PCOS patients with increased insulin response and normal glucose tolerance. Hum Reprod 2001;16(10):2066-72.
  9. Baig I. Phytochemical studies on Ferula mongolica and other mongolian medicinal plants [dissertation].Karachi: University of Karachi; 2002.
  10. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 1962;14(4):353-62.
  11. Manson JE, Rimm EB, Stampfer MJ, Colditz GA, Willett WC, Krolewski AS, et al. Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet 1991;338(8770):774-8.
  12. Tuomilehto J, Wolf E. Primary prevention of diabetes mellitus. Diabetes Care 1987;10(2):238-48.
  13. Harris MI. Impaired glucose tolerance in the US population. Diabetes Care 1989;12(7):464-74.
  14. Lüder W. Prevention of diabetes mellitus. Report of a WHO study group. WHO technical report series 844. 100 Seiten, 8 Abb., 6 Tab. World Health Organisation. Geneva 1994, Preis: 15,–Sw. fr.; 13, 50 US$. Mol Nutr Food Res 1995;39(3):252-3.
  15. Borch-Johnsen K, Neil A, Balkau B, Larsen S,Borch-Johnsen K,Nissinen A, et al. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. Lancet 1999;354:617.
  16. Hamman RF. Genetic and environmental determinants of non‐insulin‐dependent diabetes mellitus (NIDDM). Diabetes Metab Rev 1992;8(4):287-338.
  17. Amarowicz R, Synowiecki J, Shahidi F. Chemical composition of shells from red (Strongylocentrotus franciscanus) and green (Strongylocentrotus droebachiensis) sea urchin. Food Chem 2012;133(3):822-6.
  18. La Cruz‐García D, López‐Hernández J, González‐Castro MJ, Rodríguez‐Bernaldo De Quirós AI, Simal‐Lozano J. Protein, amino acid and fatty acid contents in raw and canned sea urchin (Paracentrotus lividus) harvested in Galicia (NW Spain). J Sci Food Agri 2000;80(8):1189-92.
  19. Pozharitskaya ON, Ivanova SA, Shikov AN, Makarov VG. Evaluation of free radical-scavenging activity of sea urchin pigments using HPTLC with post-chromatographic derivatization. Chromatographia 2013;76(19-20):1353-8.
  20. Krishtopina AS, Urakova IN, Terekhina YA, Pozharitskaya ON, Shikov AN. Seaurchin shell waste is a rich source of calcium. Reviews of Clinical pharmacology and Drug Therapy 2017;15(Suppl 1):35.
  21. Mccue P, Kwon YI, Shetty K. Anti‐amylase, anti‐glucosidase and anti‐angiotensin i‐converting enzyme potential of selected foods. Journal ofFood Biochemistry 2005;29(3):278-94.
  22. Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry 2001;73(2):239-44.
  23. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 1996;239(1):70-6.
  24. Duan XJ, Zhang WW, Li XM, Wang BG. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chem 2006;95(1):37-43.
  25. Lee SH, Lee JB, Lee KW, Jeon YJ. Antioxidant properties of tidal pool microalgae, Halochlorococcum porphyrae and Oltamannsiellopsis unicellularis from Jeju Island, Korea. ALGAE 2010;25(1):45-56.
  26. Olabinri BM, Odedire OO, Olaleye MT, Adekunle AS, Ehigie LO, Olabinri PF. In vitro Evaluation of Hydroxyl and Nitric Oxide Radical Scavenging Activities of Artemether. Research Journal of Biological Sciences 2010;5(1):102-5.
  27. Fraga CG, Oteiza PI. Iron toxicity and antioxidant nutrients. Toxicology 2002;180(1):23-32.
  28. Husni A, Wijayanti R. Inhibitory Activity of [alpha]-Amylase and [alpha]-Glucosidase by Padina pavonica Extracts. Journal of Biological Sciences 2014;14(8):515.
  29. Senthil SL, Kumar TV, Geetharamani D, Maruthupandi T. Screening of seaweeds collected from Southeast Coastal area of India for α-amylase inhibitory activity, antioxidant activity and biocompatibility. Int J Phar Pharm Sci 2013;5(1):240-4.
  30. Kwon YI, Apostolidis E, Shetty K. In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresour Technol 2008;99(8):2981-8.
  31. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009;5(1):54-63.
  32. DeFronzo RA, FerranniniE, Zimmet P, Alberti KG. International Textbook of Diabetes Mellitus.4th ed.UK: John Wiley & Sons; 2015.
  33. Klinger TS, Watts SA, Forcucci D. Effect of short-term feeding and starvation on storage and synthetic capacities of gut tissues of Lytechinus variegatus (Lamarck)(Echinodermata: Echinoidea). Journal of Experimental Marine Biology and Ecology 1988;117(3):187-95.
  34. Cao Y, Ashline DJ, Ficko‐Blean E, Klein AS. Trehalose and (iso) floridoside production under desiccation stress in red alga Porphyra umbilicalis and the genes involved in their synthesis. Journal of Phycology 2020; 56(6):1468-1480.
  35. Klinger TS, Diehl WJ. Activities and kinetics of digestive α-and β-glucosidase and β-galactosidase of Luidia clathrata (Say)(Echinodermata: Asteroidea). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 1985;81(2):401-3.
  36. Archana A, Babu KR. Nutrient composition and antioxidant activity of gonads of sea urchin Stomopneustes variolaris. Food Chem 2016;197(Part A):597-602.