Document Type : Original Article

Authors

1 Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Radiology and Radiotherapy Technology, School of Allied Health Sciences, Tehran University of Medical Sciences, Tehran, Iran

3 Nuclear Science and Technology Research Institute, Tehran, Iran

4 Zoonosis Research Center, Tehran University of Medical Sciences, Tehran, Iran

5 Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Iran

Abstract

Background: Radioprotectors are used to neutralize the effects of free radicals caused by ionization radiation. In this study, the radioprotective effects of magnesium sulfate and vitamin A on bone marrow cells of mice were evaluated by micronucleus assay and changes in the expression of NOX4 gene.
Methods: The mice were randomly divided into 12 groups. The mixture of drugs was injected into mice by intraperitoneal injection 2 hours before the irradiation. The dose rate was 50 cGy/min at SSD (source to surface distance) 100 cm and field size of 10×10cm2. Twenty four hours after 2 Gy irradiation by LINAC, the mice were sacrificed by cervical dislocation. Then, several microscopic slides were prepared for each sample to evaluate the number of micronucleus in polychromatic erythrocytes (PCEs). In addition, the expression of NOX4 was evaluated by Real-time PCR. Data were analyzed through SPSS 19 and the mean of groups was compared to each other using one-way ANOVA.
Results: There was a significant difference between mean mnPCEs in the treatment (drugs + radiation) groups compared to the 2 Gy group (P=0.01). The expression level of NOX4 gene was significantly lower in groups receiving the combinations of vitamin A and magnesium sulfate compared to the 2 Gy group (P =0.01). The calculated dose reduction factor (DRF) demonstrated DRF=2.58 for 2Gy.
Conclusion: The results of this study indicated that the combination of vitamin A and magnesium sulfate, possibly with an antioxidant mechanism, removes the deleterious effects of free radicals caused by ionizing radiation on bone marrow cells.

Keywords

  1. Mirdoraghi M, Einor D, Baghal-Asghari F, Esrafili A, Heidari N, Mohammadi AA, et al. Assess the annual effective dose and contribute to risk of lung cancer caused by internal radon 222 in 22 regions of Tehran, Iran using geographic information system. Journal of Environmental Health Science and Engineering. 2020; 18(1):211-20. doi: 10.1007/s40201-020-00454-3.
  2. Barquinero JF, Fattibene P, Chumak V, Ohba T, Della Monaca S, Nuccetelli C. et al. Lessons from past radiation accidents: Critical review of methods addressed to individual dose assessment of potentially exposed people and integration with medical assessment. Environment International. 2021; 146:106175. doi: 10.1016/j.envint.2020.106175.
  3. Lee Y, Choi YY, Yang M, Jin YW, Seong KM. Risk perception of radiation emergency medical staff on low-dose radiation exposure: Knowledge is a critical factor. J Environ Radioact. 2021; 227:106502. doi: 10.1016/j.jenvrad.2020.106502.
  4. Wang Z, Chen Z, Chen C, Ge D, Perrault D, Zucchetti M, et al. Quantitative safety goals for fusion power plants: Rationales and suggestions. International Journal of Energy Research. 2021; 45(6):9694-703. doi: 10.1002/er.6399.
  5. Wisnubroto DS, Zamroni H, Sumarbagiono R, Nurliati G. Challenges of implementing the policy and strategy for management of radioactive waste and nuclear spent fuel in Indonesia. Nuclear Engineering and Technology. 2021; 53(2):549-61. doi: 10.1016/j.net.2020.07.005.
  6. Bolton MB, Minor E. Addressing the ongoing humanitarian and environmental consequences of nuclear weapons: an introductory review. Global Policy. 2021; 12(1):81-99. doi: 10.1111/1758-5899.12892.
  7. Gorlenko NV, Leonova MS, Murzin MA. Occupational risks in the extraction and processing of mineral raw materials. IOP Publishing. 2020; 459(3):032023. doi: 10.1088/1755-1315/459/3/032023.
  8. Linkous AG, Yazlovitskaya EM. Novel radiosensitizing anticancer therapeutics. Anticancer Res. 2012; 32(7):2487-99. PMID: 22753705.
  9. Agbele AT, Fasoro OJ, Fabamise OM, Oluyide OO, Idolor OR, Bamise EA. Protection against ionizing radiation-induced normal tissue damage by resveratrol: A systematic review. Eurasian J Med. 2020; 52(3):298-303. doi: 10.5152/eurasianjmed.2020.20143.
  10. Changizi V, Haeri SA, Abbasi S, Rajabi Z, Mirdoraghi M. Radioprotective effects of vitamin A against gamma radiation in mouse bone marrow cells. 2019; 6:714-7. doi: 10.1016/j.mex.2019.03.020
  11. Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, et al. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol. 2019; 21(3):268-79. doi: 10.1007/s12094-018-1934-0.
  12. Musa AE, Omyan G, Esmaely F, Shabeeb D. Radioprotective effect of hesperidin: A systematic review. Medicina (Kaunas). 2019; 55(7):370. doi: 10.3390/medicina55070370.
  13. Bijman R, Rossi L, Sharfo AW, Heemsbergen W, Incrocci L, Breedveld S, et al. Automated radiotherapy planning for patient-specific exploration of the trade-off between tumor dose coverage and predicted radiation-induced toxicity-a proof of principle study for prostate cancer. Front Oncol. 2020; 10:943. doi: 10.3389/fonc.2020.00943.
  14. Fitz Gerald TJ, Bishop Jodoin M, Laurie F, Riberdy C, Aronowitz JN, Bannon E, et al. Radiation therapy. Cancer: Prevention, Early Detection, Treatment and Recovery; 2019. P. 445-61.
  15. Mun G-I, Kim S, Choi E, Kim CS, Lee Y-S. Correction to: Pharmacology of natural radioprotectors. Arch Pharm Res. 2020; 43(2):272-4. doi: 10.1007/s12272-019-01194-1. 
  16. Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, et al. Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med. 2017; 15(1):232. doi: 10.1186/s12967-017-1338-x.
  17. Kamran MZ, Ranjan A, Kaur N, Sur S, Tandon V. Radioprotective agents: strategies and translational advances. Med Res Rev. 2016; 36(3):461-93. doi: 10.1002/med.21386.
  18. Yahyapour R, Shabeeb D, Cheki M, Musa AE, Farhood B, Rezaeyan A, et al. Radiation protection and mitigation by natural antioxidants and flavonoids: Implications to radiotherapy and radiation disasters. Curr Mol Pharmacol. 2018; 11(4):285-304. doi: 10.2174/1874467211666180619125653.
  19. Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of vitamin A in the immune system. J Clin Med. 2018; 7(9):258. doi: 10.3390/jcm7090258.
  20. Fuchs-Tarlovsky V. Role of antioxidants in cancer therapy. Nutrition. 2013; 29(1):15-21. doi: 10.1016/j.nut.2012.02.014.
  21. Ciscomani-Larios JP, Sánchez-Chávez E, Jacobo-Cuellar JL, Sáenz-Hidalgo HK, Orduño-Cruz N, Cruz-Alvarez O, et al. Biofortification efficiency with magnesium salts on the increase of bioactive compounds and antioxidant capacity in snap beans. Ciência Rural. 2021; 51(6). doi: 10.1590/0103-8478cr20200442.
  22. Fernández M, Marín R, Proverbio F, Ruette F. Effect of magnesium sulfate in oxidized lipid bilayers properties by using molecular dynamics. Biochem Biophys Rep. 2021; 26:100998. doi: 10.1016/j.bbrep.2021.100998.
  23. Mohammadi HR, Shamshirian A, Eslami S, Shamshirian D, Ebrahimzadeh MA. Magnesium sulfate attenuates lethality and oxidative damage induced by different models of hypoxia in mice. Biomed Res Int. 2020; 2020: doi: 10.1155/2020/2624734. 
  24. Durlach J (2007) Overview of magnesium research: History and current trends. In Nishizawa Y, Mori H, Durlach J, (Eds.), New perspectives in magnesium research: Nutrition and health. London, Springer-Verlag. P. 3-10.
  25. Matović V, Buha A, Bulat Z, Ðukić-Ćosić D, Miljković M, Ivanišević J, et al. Route-dependent effects of cadmium/cadmium and magnesium acute treatment on parameters of oxidative stress in rat liver. Food Chem Toxicol. 2012; 50(3-4):552-7. doi: 10.1016/j.fct.2011.12.035.
  26. Swartz HM, Williams BB, Flood AB. Overview of the principles and practice of biodosimetry. Radiat Environ Biophys. 2014; 53(2):221-32. doi: 10.1007/s00411-014-0522-0. 
  27. Waldron D. Chromothripsis and micronucleus formation. Nature Reviews Genetics. 2015; 16(7):376-7. doi: 10.1038/nrg3970.
  28. Endesfelder D, Kulka U, Einbeck J, Oestreicher U. Improving the accuracy of dose estimates from automatically scored dicentric chromosomes by accounting for chromosome number. Int J Radiat Biol. 2020; 96(12):1571-84. doi: 10.1080/09553002.2020.1829152.
  29. Macaeva E, Mysara M, De Vos WH, Baatout S, Quintens R. Gene expression-based biodosimetry for radiological incidents: assessment of dose and time after radiation exposure. Int J Radiat Biol. 2019; 95(1):64-75. doi: 10.1080/09553002.2018.1511926.
  30. Knops K, Boldt S, Wolkenhauer O, Kriehuber R. Gene expression in low-and high-dose-irradiated human peripheral blood lymphocytes: possible applications for biodosimetry. Radiat Res. 2012; 178(4):304-12. doi: 10.1667/rr2913.1.
  31. Gandara ACP, Torres A, Bahia AC, Oliveira PL, Schama R. Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase. BMC Evol Biol. 2017; 17(1):92. doi: 10.1186/s12862-017-0940-0.
  32. Jafari N, Kim H, Park R, Li L, Jang M, Morris AJ, et al. CRISPR-Cas9 mediated NOX4 knockout inhibits cell proliferation and invasion in HeLa cells. PLoS One. 2017; 12(1):e0170327. doi: 10.1371/journal.pone.0170327.
  33. Li J-M, Fan LM, George VT, Brooks G. Nox2 regulates endothelial cell cycle arrest and apoptosis via p21cip1 and p53. Free Radic Biol Med. 2007; 43(6):976-86. doi: 10.1016/j.freeradbiomed.2007.06.001.
  34. Tang C-T, Lin X-L, Wu S, Liang Q, Yang L, Gao YJ, et al. NOX4-driven ROS formation regulates proliferation and apoptosis of gastric cancer cells through the GLI1 pathway. Cell Signal. 2018; 46:52-63. doi: 10.1016/j.cellsig.2018.02.007.
  35. Council NR. Guide for the care and use of laboratory animals. 8th. Washington, DC.: National Academies Press.
  36. Deloch L, Derer A, Hartmann J, Frey B, Fietkau R, Gaipl US. Modern radiotherapy concepts and the impact of radiation on immune activation. Front Oncol. 2016; 6:141. doi: 10.3389/fonc.2016.00141.
  37. Kasamoto S, Masumori S, Hayashi M. In vivo micronucleus assay in mouse bone marrow and peripheral blood. Methods Mol Biol. 2013; 1044:179-89. doi: 10.1007/978-1-62703-529-3_9. 
  38. Van Miert E, Vanscheeuwijck P, Meurrens K, Gomm W, Terpstra PM. Evaluation of the micronucleus assay in bone marrow and peripheral blood of rats for the determination of cigarette mainstream-smoke activity. Mutat Res. 2008; 652(2):131-8. doi: 10.1016/j.mrgentox.2008.01.006.
  39. Xia M, Sherlock J, Hegerich P, You X, Lee K, Walworth C, et al. Dataassist™–data analysis software for taqman® real-time PCR data. 2010; 1:210-2.
  40. Collins-Underwood JR, Zhao W, Sharpe JG, Robbins ME. NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells. Free Radic Biol Med. 2008; 45(6):929-38. doi: 10.1016/j.freeradbiomed.2008.06.024.
  41. Pazhanisamy SK, Li H, Wang Y, Batinic-Haberle I, Zhou D. NADPH oxidase inhibition attenuates total body irradiation-induced haematopoietic genomic instability. 2011; 26(3):431-5. doi: 10.1093/mutage/ger001.
  42. Wang Y, Liu L, Pazhanisamy SK, Li H, Meng A, Zhou D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic Biol Med. 2010; 48(2):348-56. doi: 10.1016/j.freeradbiomed.2009.11.005.
  43. Najafi M, Shirazi A, Motevaseli E, Geraily G, Amini P, Tooli LF, et al. Melatonin modulates regulation of NOX2 and NOX4 following irradiation in the lung. Curr Clin Pharmacol. 2019; 14(3):224-31. doi: 10.2174/1574884714666190502151733.
  44. Yang Q, Zhang P, Liu T, Zhang X, Pan X, Cen Y, et al. Magnesium isoglycyrrhizinate ameliorates radiation-induced pulmonary fibrosis by inhibiting fibroblast differentiation via the p38MAPK/Akt/Nox4 Biomed Pharmacother. 2019; 115:108955. doi: 10.1016/j.biopha.2019.108955.
  45. Jiang Y, You F, Zhu J, Zheng C, Yan R, Zeng J. Cryptotanshinone ameliorates radiation-induced lung injury in rats. Evidence-Based Complementary and Alternative Medicine. 2019; doi: 10.1155/2019/1908416.
  46. Kabel AM. Free radicals and antioxidants: Role of enzymes and nutrition. World Journal of Nutrition and Health. 2014; 2(3):35-8. doi: 10.12691/jnh-2-3-2.
  47. Palace VP, Khaper N, Qin Q, Singal PK. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic Biol Med. 1999; 26(5-6):746-61. doi: 10.1016/s0891-5849(98)00266-4.
  48. Tesoriere L, Ciaccio M, Bongiorno A, Riccio A, Pintaudi AM, Livrea MA. Antioxidant activity of all-trans-retinol in homogeneous solution and in phosphatidylcholine liposomes. Archives of biochemistry and biophysics. 1993; 307(1):217-23. doi: 10.1006/abbi.1993.1581.
  49. Harapanhalli RS, Narra VR, Yaghmai V, Yaghmai V, Azure MT, Goddu SM, et al. Vitamins as radioprotectors in vivo II. Protection by vitamin A and soybean oil against radiation damage caused by internal radionuclides. Radiat Res. 1994; 139(1):115-22. PMID: 8016300.
  50. Massy ZA, Drüeke TB. Magnesium and outcomes in patients with chronic kidney disease: Focus on vascular calcification, atherosclerosis and survival. Clin Kidney J. 2012; 5(Suppl 1):52-61. doi: 10.1093/ndtplus/sfr167.
  51. Ryan CM, Geckle M. Why is learning and memory dysfunction in Type 2 diabetes limited to older adults?. Diabetes Metab Res Rev. 2000; 16(5):308-15. doi: 10.1002/1520-7560(2000)9999:9999<::aid-dmrr141>3.0.co;2-x.
  52. Yarube IU. Nitrate-induced oxidative stress and the effects of dietary antioxidant vitamins C, E and A: Insights from experimental and clinical studies. Bayero Journal of Pure and Applied Sciences. 2011; 4(2):69-79. doi: 4314/bajopas.v4i2.14.
  53. Geiger H, Wanner C. Magnesium in disease. Clin kidney j. 2012; 5(1):25-38. doi: 1093/ndtplus/sfr165.